
1

APP4MC Tools: EMF based Model Transformation Framework



APP4MC Tools : EMF-based Model Transformation Framework
How is it different ??

Yet another model transformation framework (for M2M and M2T)
How is this different from other frameworks like ATL, QVT, Xpand, Xtend etc.,

This framework acts like a wrapper around model transformation technologies (like Xtend2 )and 
provides the complete infrastructure for easily specifying meta-models, hooking loaders for the 

models, caching mechanism, defining transformation code, building update sites or command line 
products and testing of the transformation code.

2



EMF-based M2M Transformation Framework
Features
• Generic framework (based on Eclipse extension mechanism): Easy to plug and play with meta 

models to be transformed

• Usage of Google Guice to easily inject bindings of Transformation classes

• Usage of Xtend2 as the core technology for transformation (both M2M and M2T) [java like 
syntax]

• Framework provides cache objects across each Transformation class, to easily exchange the 
data

• Easy to create standalone RCP product of the transformation and use it as a command line 
application (or) create a eclipse update site which can be added to an eclipse IDE

• Maven build infrastructure to create the update site, standalone products for the base 
transformation and customized transformations 

• Easy to extend the base transformation by providing new transformation classes and binding 
them using Google Guice. 

• Creating custom products with the available Maven build infrastructure

3



EMF-based M2M Transformation Framework
Architecture

4

Eclipse Core Runtime

EMF Log4j
Google

Guice
Xbase.lib Xtend2

APP4MC Transformation Framework Plugins 

(Application, Extensions)

Application plugin
M2M (or) M2T 

transformation plugin

Build Plugin (to create standalone RCP)

Custom M2M (or) M2T 

Transformations

Custom Product Build 

Plugin

Transformation code 

developed by the users 

(product line specific)

Transformation framework 

(part of APP4MC Tools) 

Customization for the 

standard transformations

(product specific)



EMF-based M2M Transformation Framework
High Level Design

5

Java Class to be extended for 

developing new application

Eclipse Extension Point



EMF-based M2M Transformation Framework
Low Level Design : org.eclipse.app4mc.transformation.extensions

6

“Xtend classes” required 

for transformation

Configuration classes:

containing code for defining 

both input resourceset and 

output resourceset

Classes required for specifying the 

Google Guice Module and binding Cache 

object and Transformer class

Extension Point

Definition



EMF-based M2M Transformation Framework
Inchron Model Transformation

7

Amalthea to Inchron M2M Transformation

Customization of Amalthea to 

Inchron M2M Transformation 

based on specific requirements

Extension point for Model 

Transformation



EMF-based M2M Transformation Framework
Inchron Model Transformation

8

APP4MC Model transformation 

framework

Classes responsible for M2M 

transformation from Amalthea to 

Inchron model
Google 

Guice

Module

Transformati

on 

configuration

Xtend

classes 

containing 

rules for 

Transformati

on

Contents of M2M 

plugin (Amalthea 

to Inchron)

Plugin.xml of 

M2M plugin



EMF-based M2M Transformation Framework
Inchron Model Transformation : Product definition

9

Contains all the 

VM arguments, 

working 

directory 

configuration 

etc., 

Contents of Product file

Contents of plugin.xml file

ID of application is specified in the product file

ID of product is specified in the product file



EMF-based M2M Transformation Framework
Inchron Model Transformation : Execution

10

Note: In case of change in location of 

input.properties file, working directory location 

should be updated in launch configuration of the 

Amlt2Inchron_Transformation



Backup slides

11



EMF-based M2M Transformation
Xtend

• Easy to read, developed on Java source code

• Compiles Java code, can be called from Java
• Code generation can be influenced with active expressions 

• Can run in command line 

• Model transformation and code generation within the same template

• Supports overloading and overriding functions

• Include features: debug, call-hierarchy, name refactoring, profiling etc.

• JUnit test cases can be used (maybe interesting for certification) 

12



EMF-based M2M Transformation
Google Guice

• Loose coupling to extend functionality based on injection mechanism 

• It can dynamically bind a default transformation with the user specific 
transformation

• Can be easily integrated into Xtend

• Generic transformation should provide top level transformation where 
the user can 
• Provide all customized classes  injection (overriding) is done dynamically by 

Google Guice

13



Extensions mechanisms

14



EMF-based M2M Transformation
Example

• Label Access:
• Generic: Calculate static latency  add to Runtime

• ExtentionA: Labelaccess with certain tags behave differently  override 
labelTransformation Function

• ExtentionB: Labelaccess calls TLM function in SystemC hardware model for Co-
Simulation  override 

Generic

….

Class transformClassRunnableItems(Task t) {

ForAll Instructions do transformInstructions(instr);

ForAll LabelAccess do transformLabelAccess(labelAcc);

….

}

….

Class transformLabelAccess(labelAcc) {

delay = calcLatency();

addToDelay(delay);

} 15

ExtentionA:

Class extendA extending transformLabelAccess(labelAcc) {

if (tag)

delay = …..;

addToDelay(delay);

}

ExtentionB:

Class extendB extending transformLabelAccess(labelAcc) {

generatelTlmHardwareCall(core, mem);
}

ExtentionA:

startGenericTransformation(extendA, ….);

ExtentionB:
startGenericTransformation (extendB, …..);



Injection

16

BU1 Transformation

* SW_Model

|__swTrans1

* HW_Model
Generic Transformation

* SW_Model

|__swTrans1

|__swTrans2

|__swTrans3

* HW_Model

* MappingDeployment

BU2 Variant 1

* SW_Model

|__swTrans1

|__swTrans2

BU2 Variant 2

* SW_Model

|__swTrans1

|__swTrans3

inject

inject
inject

BU2 Variant 3

* SW_Model

|__swTrans1
inject



Thank you

17


