This Readme described the work of two GSoC projects in the years 2019 and 2020 related to Amalthea-based response time analyses.
2019 Google Summer of Code (CPU-GPU Response Time and Mapping Analysis)
2020 Google Summer of Code (Non-Preemptive / Limited preemptive in Response Time Analysis)
GSOC 2019
GSOC 2020
GSOC 2019
The current APP4MC library does provide several methods which are useful for deriving execution time for a task, a runnable or ticks (pure computation) through the Util package. But methods for response time are still not available. The reason is that response time analysis can be varied depending on the analyzed model so it is hard to be generalized. But since the trends are evolving from homogeneous to heterogeneous platform, the analysis methodology have become much more sophisticated so it is necessary to have CPU response time analysis which can be used for different mapping analysis with a different processing unit type (e.g., GPU).
In this project, a standardized response time analysis methodology(Mathai Joseph and Paritosh Pandya, 1986) which involves a complex algorithm is used. Not only this, but also a class, CpuRTA
which is designed for Generic Algorithm Mapping is provided. Since a heterogeneous platfrom usually requires a different analysis methodology for a processing unit according to its type(e.g., CPU & GPU), a class that can be used with GA Mapping and has a built-in general analysis methodology would be very helpful and save a lot of time which otherwise would be spent for implementing the same algorithm for those tasks that are mapped to a particular type of processing units (e.g., CPU). Along with these, another class, RuntimeUtilRTA
which supports CpuRTA
class provides several ways to calculate execution time of a task is also provided. The execution time calculation methodology can be different depending on an execution case (e.g., Worst Case, Best Case, Average Case), a transmission type (e.g., Synchronous, Asynchronous) or a different mapping model. This class can be modified and reused for other analysis models if only a method which takes care of a Runnable execution time is adjusted.
GSOC 2020 There are several paper about response time analysis but not much open source code is available that developer can use as reference or implementation can be found in the internet. This project is the contribution to the open source community in this matter. In this project, you can find method to calculate response time in different preemptive environment: non-preemptive, cooperative, or a mixed of the above.
GSOC 2019
First of all, you will need the pull the amalthea tools repo.
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/
Under 'responseTime-analyzer'>'plugins'>'src'>...>'gsoc_rta' folder, there is 'CpuRTA' class. This is the implementation source file. By running them, one can derive the total sum of response times of the given model.
Under 'responseTime-analyzer'>'plugins'>'src'>...>'gsoc_rta'>'ui' folder, there is 'RTApp_WATERS19' class. This is Java Swing UI source file that corresponds to the 'CpuRTA'. This UI is created based on WATERS19 Project. By running this, one may get more detailed visuals of the result of 'CpuRTA' class. (Refer to 'APP4RTA_1.0_Description.pdf' for more details.)('responseTime-analyzer'>'plugins'>'doc'>'APP4RTA_1.0_Description.pdf')
Since the target of implementing heterogeneous platform is to achieve better performance and efficiency, just simply calculating response time is not enough. To realize the optimized response time analysis, different mapping analysis for the same given model according to Generic Algorithm should be taken into account. Generic Algorithm would map tasks to different processing units in the form of integer array so that the total sum of each task’s response time according to the each GA generation can be delivered and compared each other to come up with a better solution. For this reason, a public method which returns the total sum of each task’s response time and the relevant private methods that are used to support this method are needed. The corresponding methods are followed below.
Refer to javadoc for more details.
CpuRTA.java
getCPUResponseTimeSum
Calculate the total sum of response times of the tasks of the given Amalthea model with a GA mapping model
getTaskCPURT
Calculate response time of the given task of the given Amalthea model with a GA mapping model
taskSorting
Sort out the given list of tasks (in order of shorter period first - Rate Monotonic Scheduling)
preciseTestCPURT (Response Time analysis Equation Explanation)
Calculate response time of the observed task according to the periodic tasks response time analysis algorithm.
Ri = Ci + Σj ∈ HP(i) [Ri/Tj]*Cj (a standardized response time analysis methodology(Mathai Joseph and Paritosh Pandya, 1986))
RuntimeUtilRTA.java
getExecutionTimeforCPUTask
Calculate execution time of the given task under one of the several configurations.
doesThisTaskTriggerCPUTask
Find out whether the given triggering task(that has an InterProcessTrigger) triggers a GPU task which is newly mapped to CPU.
syncTypeOperation
Calculate execution time of the given runnableList in a synchronous manner.
asyncTypeOperation
Calculate execution time of the given runnableList in an asynchronous manner.
getExecutionTimeForGPUTaskOnCPU
Calculate execution time of the given task which was originally designed for GPU but newly mapped to CPU by Generic Algorithm Mapping.
getExecutionTimeForRTARunnable
Calculate execution time of the given runnable.
getTaskMemoryAccessTime
Calculate memory access time of the observed task.
getRunnableMemoryAccessTime
Calculate memory access time of the observed runnable.
(Explanation)
Read(Write)_Access_Time = Round_UP(Size_of_Read_Labels / 64.0 Bytes) * (Read_Latency / Frequency)
isTriggeringTask
Identify whether the given task has an InterProcessTrigger or not.
RTApp.java
User Interface Window
[APP4RTA_1.0_Description](Add Ref here)('responseTime-analyzer'>'plugins'>'doc'>'APP4RTA_1.0_Description.pdf')
GSOC 2020
First of all, you will need the pull the amalthea tools repo.
https://git.eclipse.org/c/app4mc/org.eclipse.app4mc.tools.git/
Check out the app4mc0.9.8/gsoc20npRTA.
This is the branch that contains the GSoC2020 implementation by the time the Project is submitted. It may be merged to master soon, too.
Under responseTime-analyzer > plugins > src >...> gsoc_rta folder You will find NPandPRta
class. This is the implementation source file. One can calculate task's response time in different environment using this.
Under responseTime-analyzer > plugins > src >...> gsoc_rta >'test' folder, there is NPandPNumerical
class. This is a numerical example on how functions/equations used in 'NPandPRta' work.
Under responseTime-analyzer > plugins > src >...> gsoc_rta folder Blocking
is also located here, using this will allow you to calculate local and global blocking time of task
The utlimate target is to implement response time analysis in a mixed environemnt, where task can be surrounded by different tasks with different preemptive type, from preemptive, cooperative to non-preemptive.
The implementation are located in NPandPRta
class. Which include several response time analysis methods.
Refer to each methods' javadoc for more info, mention here are the most important/useful functions, go to this readthedoc if you want a full documentation
NPandPRta.java
There is something need to be mentioned before you try, this class is created based on WATERS2019 model, the functions are tested using that model. But you should be able to ultilize this class without many problem as long as you provided 3 input parameters:
Also additionally there are 3 other parameters:
Below are the important functions that you will probably use most of the time. For the list of all function, refer to the javadoc, readthedoc or open the class, lots of comment are left there
getRTAinMixedPreemptiveEnvironment
Calculate response time of task in mixed environment. Drop the task, the integer mapping array, and the model (again this class is made mainly for WATERS2019 derived model, but it should work on other as well) and you get your response time. The developer also opt in an option where you can input your own preemptive type array. Where you can change task's preemptive type without changing it in the model.
setSchedubilityCheck
This function set a boolean variable where you can enable/disable schedubility check. Which means if you set to false. Every RTA functions will return the value without checking whether that response time bigger than task's period or not.
getResponseTimeViaLevelI
Calculate resposne time of task in preemptive environment via level-i busy window technique. Pretty vanilla/basic implementation.
getResponseTimeViaRecurrenceRelation
Calculate resposne time of task in preemptive environment via recurrence relation. Again very basic execution of how response time is calculated Should give the same result as response time level-i.
getPureExecutionTime
Using the well-known semantics, where task is run as follow: READ -> EXECUTION -> WRITE Calculate all of the element from each step, sum all of them and we have task's execution time.
Blocking.java
Blocking analysis, calculate blocking time of semaphore(critical section) when they are exist, or else calculate time other tasks have to wait due to global resource occupancy (task had to wait because other task is reading/writing label) ) Same as the NPandPRta.java
, this class also created based on WATER 2019 model.
Again this only listed important/useful function. For more info, please refer functions' javadoc and readthedoc
getGlobalBlockingTime
Calculate task's global blocking time ( time blocked by task from other cores) due to semaphore lock. If there is no semaphore, the function will calculate blocking time due to resource being read/write by other task.
The blocking policy is Priority Ceiling Protocol FYI
getLocalBlockingTime
Same with getGlobalBlockingTime, but this time we calculate blocking time due to local task (task within same core)
CpuRTA
RuntimeUtilRTA
NPandPRTA