
 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 1 of 24 

DTP Help-Helper  
for  

Dynamic Context-Sensitive Help 
This document introduces the Data Tools Platform™ (DTP) help-helper plug-in, which is 
provided in the Eclipse™ DTP project, since version 1.5 (released June 29, 2007). 
The DTP help-helper plug-in (org.eclipse.datatools.help) contributes two key enablers for 
dynamic context-sensitive help: 
• A ContextProviderDelegate implementation, whose methods allow the abstraction of 

help context IDs and context-specific help search expressions from the user interface 
(UI) code 

• An extension point (org.eclipse.datatools.help.helpKeyProperties), which allows 
other plug-ins to contribute ResourceBundle properties files that define the mapping 
of abstract helpKey constants (used in the UI code) to externalized help context ID 
strings and context-specific help search expressions 

Note: This document deals specifically with the Eclipse implementation of dynamic 
context-sensitive help. It does not address issues related to statically-defined help 
contexts (i.e., non-dynamic context-sensitive help).   

 

Contents 
1. Introduction................................................................................................................... 2 

2. DTP Help-Helper .......................................................................................................... 5 

3. Context-Sensitive Help UI Implementation................................................................ 7 

4. helpKey Properties Files............................................................................................. 11 

5. Context-Sensitive Help UA Plug-ins.......................................................................... 13 

6. Team Responsibilities and Collaboration................................................................. 16 

7. Documentation Team Workflow ............................................................................... 18 

8. Testing Dynamic Context-Sensitive Help ................................................................. 23 

9. Legal Notices................................................................................................................ 24 
 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 2 of 24 

1. Introduction 
Context-sensitive help is focused user assistance content, which is specific to the current 
application context (i.e., the help context), and presented on demand when a platform-
specific trigger is activated (e.g., F1 on Windows).  
Context-sensitive help requires interactions between user interface (UI) components, user 
assistance (UA) components, and the Eclipse platform help system. 
UI components: 
• Contribute UI controls 
• Define the association of help contexts with UI controls 
UA components: 
• Contribute context-specific help content and online documentation content 
• Define the association of help contexts with context-specific help content and related 

online documentation topics 
Eclipse help system: 
• Resolves help context references to matching context-specific help contributions 
• Contributes the help presentation mechanisms (e.g., the Help view) 
• Provides API to enable context-sensitive help interactions for UI and UA components 

1.1. Static vs. Dynamic Help Contexts 
UI components can define the associations between UI controls and help contexts, either 
statically or dynamically. 
• When defined statically, the effective help context changes only when the user 

explicitly requests context-sensitive help (i.e., when the context-sensitive help trigger 
is activated). 

• When defined dynamically, the effective help context changes whenever the user 
activates any UI control with a dynamic context association (e.g., selecting a menu 
option, moving from one page to another in a dialog, etc.). 

That distinction is significant when the Help view is visible. 
• When the context association is defined statically, context-specific content shown in 

the Help view remains unchanged, regardless of the user’s action, unless the user 
explicitly requests context-sensitive help (e.g., by pressing F1). 

• When the context association is defined dynamically, context-specific content shown 
in the Help view is updated automatically, whenever the user activates a UI control. 

All help contexts are defined and subsequently identified by a help context ID. The 
Eclipse help system uses help context IDs to locate matching org.eclipse.help.IContext 
objects, which represent the context-specific help content. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 3 of 24 

1.2. Dynamic Context-Sensitive Help 
Since 3.1, Eclipse supports dynamic context-sensitive help with: 
• An interface class (org.eclipse.help.IContextProvider), and  
• The Help view (a workbench part) 
To provide dynamic context-sensitive help, a UI component must define the associations 
between its UI controls and help contexts dynamically, by implementing methods of 
IContextProvider: 
• getContext(Object target) — returns a help context (ID) for the given target 
• getContextChangeMask() — returns the mask created by combining supported 

change triggers, using the bitwise OR operation 
• getSearchExpression(Object target) — returns a search expression that the help 

system should use to find more help content related to the current target 
The Help view tracks the activation of workbench parts (views and editors), and it checks 
to see if they adapt to the IContextProvider interface. If they do, the Help view uses the 
IContextProvider methods (implemented in the UI component) to locate a corresponding 
IContext object. 
The IContextProvider.getContextChangeMask method provides a mask that the Help 
view uses to determine when a context change occurs dynamically (e.g., as a result of a 
user gesture to change the UI focus). 
When the Help view detects a context change, it updates its context-sensitive help 
presentation to display: 
• The content of the IContext object that is associated with the current context (i.e., the 

name and description of the UI control, and a list of related help topics) 
• Dynamic Help search results — a list of help topics found using the search expression 

that was returned by the IContextProvider.getSearchExpression method 
The content of an IContext object (and its association with a particular help context ID) is 
defined by a context XML file, which is usually contributed by a UA component. 
To register IContext content contributions with the help system, a UA plug-in must 
declare an extension of org.eclipse.help.contexts, identifying both the context XML file 
and the UI plug-in for which the IContext content is contributed. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 4 of 24 

1.3. Help Context Abstraction 
Help context abstraction is a technique to simplify the handling of help context IDs and 
help search expressions in the UI code, by abstracting them to “help keys.” 
Help context abstraction provides the following benefits: 
• Development teams are free to associate new help contexts with UI controls, without 

necessitating that corresponding help context IDs or help search expressions exist. 
• Documentation teams are free to define UA help contexts, modify help context IDs, 

and control the mapping from abstract help contexts to concrete help context IDs, 
without necessitating any change in the UI code. 

• Documentation teams are free to define and modify context-specific help search 
expressions, and the mapping from abstract help contexts to help search expressions, 
without necessitating any change in the UI code. 

Note: Help search expressions include human-readable text, so they must be externalized 
for localization. 

This separation of responsibilities enables the project team to provide higher quality, and 
more precisely targeted, dynamic context-sensitive help. 
Together, the DTP help-helper and a context-sensitive help UA plug-in provide an 
abstraction layer, which enables dynamic context-sensitive help, with a practical and 
easily maintained implementation in the UI code. 

 
 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 5 of 24 

2. DTP Help-Helper 
The DTP help-helper plug-in (org.eclipse.datatools.help) provides a “help key” extension 
point (org.eclipse.datatools.help.helpKeyProperties), and supplies a context provider 
delegate implementation (org.eclipse.datatools.help.ContextProviderDelegate). 
The helpKeyProperties extension point allows any plug-in to contribute ResourceBundle 
properties files that define the mapping of abstract help keys to concrete help context IDs 
and help search expressions. 
The ContextProviderDelegate, along with abstract help keys, enables help context 
abstraction for any UI control that implements methods of IContextProvider. 

2.1. Help Keys 
Rather than declaring help context IDs directly, UI controls use help keys (i.e., helpKey 
constants). Though meaningless to the Eclipse help system, helpKey constants provide an 
abstraction in the Java code from the actual help context IDs and help search expressions. 
Each helpKey constant is used to reference an actual help context ID string and a 
corresponding help search expression, which are defined in properties files (one each for 
help context IDs and help search expressions). 
Note: Any plug-in can contribute the helpKey properties files for a UI component by 

declaring an extension to org.eclipse.datatools.help.helpKeyProperties in its 
plugin.xml file. For example, a dedicated context-sensitive help plug-in could 
contribute both the helpKey properties files and the Eclipse context XML files, 
independent of the UI plug-in and the UA content contributor (online documentation) 
plug-in. 

Similar to externalized messages, helpKey constants are declared as public static final 
String in an interface class. 
UI components must implement a helpKey constants interface class to reference the 
externalized help context IDs in a ResourceBundle properties file. For more information, 
see helpKey Constants Interface Class. 

2.2. Context Provider Delegate 
The ContextProviderDelegate allows a UI control to provide the actual help context ID 
and help search expression to the methods of IContextProvider, while handling references 
to those strings as an abstract help key (helpKey constant). 
To support the abstraction from help context ID to helpKey constant, a UI control must: 
• Adapt to the IContextProvider.class object as a key 
• Create an instance of the ContextProviderDelegate, passing in the symbolic name of 

the plug-in associated with the help context 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 6 of 24 

• Implement static methods of IContextProvider (getContext, getContextChangeMask, 
and getSearchExpression), each of which returns a corresponding method of the 
ContextProviderDelegate instance 

• Define the help context using IWorkbench.setHelp (e.g., in the createPartControl 
method), by passing the abstract helpKey constant string 

The ContextProviderDelegate methods return the actual help context ID, change mask, or 
help search expression to the IContextProvider methods. 
Note: The DTP help-helper handles unqualified help context IDs defined in properties 

files to fully-qualify them, before it returns them through ContextProviderDelegate 
methods. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 7 of 24 

3. Context-Sensitive Help UI Implementation 
The following sections give examples of dynamic help context implementation, with help 
context abstraction, in a view and a dialog. 
Java code examples are from the Eclipse Data Tools Platform (DTP) 1.6 source code. 

3.1. View Example 
The DataSourceExplorerView (in org.eclipse.datatools.connectivity.ui.dse) first 
implements the org.eclipse.help.IContextProvider interface, and then it creates an 
instance of the org.eclipse.datatools.help.ContextProviderDelegate: 

private ContextProviderDelegate contextProviderDelegate = new 
ContextProviderDelegate(DSEPlugin.getDefault().getBundle().getSymbolicName())
; 

The symbolic name is usually the plug-in ID. Providing the symbolic name as shown 
above will avoid broken code, if the plug-in’s ID changes. 
Note: The plug-in ID passed to the ContextProviderDelegate must indicate which plug-in 

the help context is actually associated with. In the example above, the help context is 
associated with the DSEPlugin (i.e., the plug-in that contributes the 
DataSourceExplorerView UI component). However, the help context could be 
associated with a separate plug-in, for example, if the plug-in “owner” of the UI 
component is not the same as the plug-in that contributes the UI component. 

Implementation of the IContextProvider methods looks like this: 
public IContext getContext(Object target) { 
   return contextProviderDelegate.getContext(target); 
} 
 
public int getContextChangeMask() { 
   return contextProviderDelegate.getContextChangeMask(); 
} 
 
public String getSearchExpression(Object target) { 
   return contextProviderDelegate.getSearchExpression(target); 
} 

After implementing the IContextProvider methods, the view must set the help context for 
the control in the createPartControl method: 

public void createPartControl(Composite parent) { 
   super.createPartControl(parent); 
   PlatformUI.getWorkbench().getHelpSystem() 
      .setHelp(getCommonViewer().getTree(), 
      IHelpContextsConnectivityUIDSE.CONTEXT_ID_CONNECTIVITY_DSE_VIEW); 
} 

Note: The string passed to the setHelp method is actually an abstract helpKey constant, 
whose property key is mapped to a concrete help context ID string by the 
ContextProviderDelegate. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 8 of 24 

All helpKey constant strings must be declared in an interface class. For more 
information, see helpKey Constants Interface Class. 

3.2. Dialog Example 
Dialogs must set the help context in the createDialogArea method (to provide context-
sensitive help for the dialog itself). 
EditDriverDialog (in org.eclipse.datatools.connectivity.internal.ui.dialogs) implements 
the createDialogArea method like this: 

   protected Control createDialogArea(Composite parent) { 
       getShell().setData( HelpUtil.CONTEXT_PROVIDER_KEY, this); 
       HelpUtil.setHelp( getShell(), 
        HelpUtil.getContextId(IHelpConstants.CONTEXT_ID_EDIT_DRIVER_DIALOG, 
        ConnectivityUIPlugin.getDefault().getBundle().getSymbolicName())); 
       ... 
   } 

This is similar to the technique in the DataSourceExplorerView, except that 
EditDriverDialog uses methods of the org.eclipse.datatools.help.HelpUtil class to 
associate an instance of the context provider delegate with the dialog. 
• The first call, getShell().setData() tells the help system that the dialog will use the 

help-helper’s delegated setHelp method to provide help contexts. 
• The second call, HelpUtil.setHelp() is a method that wraps the IWorkbench.setHelp 

call in a unique listener, so that the help system can find the correct help context for 
this control (in this case, the shell for the dialog). 

To provide more granular help, at a lower level in the dialog, the dialog could call 
setHelp, with a unique help context for each control in the dialog. 
Note: The string passed to the setHelp method is actually an abstract helpKey constant, 

whose property key is mapped to a concrete help context ID string by the 
ContextProviderDelegate. 

All helpKey constant strings must be declared in an interface class. For more 
information, see helpKey Constants Interface Class. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 9 of 24 

3.3. helpKey Constants Interface Class 
To reference the externalized help context IDs, which are defined in a ResourceBundle 
properties file, UI components must implement an interface class to declare the abstract 
helpKey constants. 
The following example is from the org.eclipse.datatools.connectivity.ui source code. 

package org.eclipse.datatools.connectivity.internal.ui; 
 
/** 
 * helpKey_constants_for_plug-in: org.eclipse.datatools.connectivity.ui 
  */ 
 
public interface IHelpConstants { 
 
    /* 
     * CONTEXT_ID_CP_PROPERTY_PAGE = 
     * Basic profile name/description/auto-connect property page 
     */ 
    public static final String CONTEXT_ID_CP_PROPERTY_PAGE =  
            "CONTEXT_ID_CP_PROPERTY_PAGE"; //$NON-NLS-1$ 
 
    /* 
     * CONTEXT_ID_CP_WIZARD_PAGE = 
     * wizard selection page in New Connection Profile wizard 
     */ 
    public static final String CONTEXT_ID_CP_WIZARD_PAGE =  
            "CONTEXT_ID_CP_WIZARD_PAGE"; //$NON-NLS-1$ 
 
    /* 
     * CONTEXT_ID_INTRO_WIZARD_PAGE = 
     * Basic intro page for new connection profile wizard 
     */ 
    public static final String CONTEXT_ID_INTRO_WIZARD_PAGE =  
            "CONTEXT_ID_INTRO_WIZARD_PAGE"; //$NON-NLS-1$ 
 
... 
} 

Notice the following features of the helpKey constants interface class: 
• A Javadoc comment block appears between the package and class declarations. The 

comment identifies every UI plug-in that will use this class to pass an abstract 
helpKey constant to the ContextProviderDelegate. 

• The class declares only helpKey constants; no other constants are declared in this 
class. 

• The class declares all of the helpKey constants for at least one UI plug-in.  
Note: The class can declare helpKey constants for more than one UI plug-in, but all of 

the helpKey constants for any one UI plug-in must be declared in only one helpKey 
constants interface class. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 10 of 24 

• Each helpKey constant declaration should be preceded by a comment, which must 
provide sufficient information for the Documentation team to determine the location 
and purpose of the associated UI control. 

• Each helpKey constant is declared as public static final String, in the form: 

public static final String MY_HELP_KEY = "MY_HELP_KEY"; 

where MY_HELP_KEY is the literal character string used as the helpKey constant in a 
UI control. 

Note: The helpKey constants should be declared as literal string values only. Indirect 
declarations (such as HELP_KEY = PREFIX + "HELP_KEY_STRING" ) should be 
avoided. 

• The only characters allowed in a helpKey constant string are: upper case and lower 
case letters (a-z, A-Z), numbers (0-9), and the underscore (_).  

Note: A helpKey constant string must not appear in the format of a fully-qualified help 
context ID. Any period (.) or blank space character will cause problems, if the 
helpKey constant is mapped to itself (as an unqualified help context ID) in the 
helpKey properties file. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 11 of 24 

4. helpKey Properties Files 
A helpKey properties file defines the mapping of helpKey constants (property keys), 
either to actual help context IDs, or to context-specific help search expressions. helpKey 
properties files are usually contributed in pairs, one for context IDs and one for search 
expressions. 
Note: The help context ID strings defined in a helpKey properties file cannot be fully-

qualified context IDs. They must not include any blank space or period (.) characters. 
The DTP help-helper handles unqualified help context IDs defined in properties files 
to fully-qualify them, before it returns them to the UI control through the 
ContextProviderDelegate. 

The following excerpt is from a helpKey properties file, which is contributed by the 
org.eclipse.datatools.doc.user.contexts plug-in to define concrete help context ID strings. 

... 
# CONTEXT_ID_CP_PROPERTY_PAGE = 
# Basic profile name/description/auto-connect property page 
CONTEXT_ID_CP_PROPERTY_PAGE = CONNECTION_PROFILE_COMMON_PROPERTY_PAGE 
 
# CONTEXT_ID_CP_WIZARD_PAGE = 
# wizard selection page in New Connection Profile wizard 
CONTEXT_ID_CP_WIZARD_PAGE = NEW_CONNECTION_PROFILE_WIZARD 
 
# CONTEXT_ID_INTRO_WIZARD_PAGE = 
# Basic intro page for new connection profile wizard 
CONTEXT_ID_INTRO_WIZARD_PAGE = NEW_CONNECTION_PROFILE_WIZARD 
... 

Notice that two abstract help contexts (represented by the helpKey constants 
CONTEXT_ID_CP_WIZARD_PAGE and CONTEXT_ID_INTRO_WIZARD_PAGE) are 
mapped to one concrete help context ID (NEW_CONNECTION_PROFILE_WIZARD). 
This is an example of the flexibility afforded by abstract help contexts, allowing the UA 
component to combine multiple abstract help contexts in a single, concrete help context 
ID, which is independent of the help context implementation in the UI component. 
The following example shows the mapping of a helpKey constant to a context-specific 
help search expression in a helpKey properties file. 

... 
#  * CONTEXT_ID_CP_PROPERTY_PAGE = 
#  * Basic profile name/description/auto-connect property page 
CONTEXT_ID_CP_PROPERTY_PAGE = "connection profile" AND "properties" 
... 

Search expression strings must conform to the rules for Apache Lucene query parser 
syntax: http://lucene.apache.org/java/docs/queryparsersyntax.html 
Note: The terms (keywords) in a search expression are not case sensitive, but the 

Boolean operators (e.g., AND, NOT, OR) must be all upper case. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 12 of 24 

4.1. helpKey Properties File Names 
Names of helpKey properties files are arbitrary (as long as they end with .properties). 
However, a context-sensitive help plug-in could contribute pairs of helpKey properties 
files for several UI plug-ins, and the files would need to have unique names, if they were 
located in the same directory. 
As a convention, helpKey properties file names should correspond with the UI plug-in 
that they serve. For example: 
• org.eclipse.datatools.connectivity.ui.contextIds.properties 
• org.eclipse.datatools.connectivity.ui.searchExpressions.properties 
To allow arbitrary names for helpKey properties files, and to abstract the names of 
helpKey properties files from UI components, the DTP help-helper provides an extension 
point (org.eclipse.datatools.help.helpKeyProperties). That extension point allows any 
plug-in to declare helpKey properties file contributions for a UI plug-in.  
For more information about the org.eclipse.datatools.help.helpKeyProperties extension 
point, see Contributing helpKey Properties Files. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 13 of 24 

5. Context-Sensitive Help UA Plug-ins 
Context-sensitive help UA plug-ins handle the mapping of help contexts to context-
specific help content and related online documentation topics. 
For projects that use the DTP help-helper, context-sensitive help plug-ins contribute: 
• Eclipse context XML files, which supply the context-specific help content for each 

help context, and point to other help topic contributions related to the help context 
• Java properties files, which define the property key-value pairs that map abstract 

helpKey constants to concrete help context IDs and context-specific help search 
expressions 

Note: The helpKey properties files are usually contributed in pairs, one each for help 
context IDs and help search expressions. 

The following diagram shows how a dedicated context-sensitive help plug-in interacts 
with the DTP help-helper and the Eclipse help system at runtime, to provide dynamic 
context-sensitive help for a UI plug-in. 

 

During workbench startup: 
• The DTP help-helper registers helpKey properties file contributions, declared by 

context-sensitive help plug-ins 
• The Eclipse help system registers: 

 IContext content contributions, declared by context-sensitive help plug-ins 
 Online help (TOC and topics) contributions, declared by documentation plug-ins 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 14 of 24 

After the workbench is initialized, the GUI is presented, with workbench parts and 
controls contributed by UI plug-ins. Context-sensitive help requests are usually handled 
by a UI plug-in (or its delegated help event listener), for the workbench parts and UI 
controls that it contributes. 
When the user requests context-sensitive help (e.g., by pressing F1, or clicking a help 
icon), the following sequence occurs: 
1. The UI plug-in requests a concrete help context ID from the DTP help-helper, by 

passing an abstract helpKey. 

2. The DTP help-helper looks up the help context ID by its associated helpKey, in the 
helpKey properties file that was registered for the UI plug-in. 

3. The DTP help-helper returns the help context ID to the UI plug-in. 

4. The UI plug-in sets the concrete help context ID on its associated workbench part or 
UI control, and then passes that help context ID to the Eclipse help system to request 
the display of context-sensitive help. 

5. The Eclipse help system looks up the context-specific content and related topics by 
help context ID, retrieves them from the context XML file that was registered for the 
UI plug-in, and then displays them in the Help view. 

6. Upon user request (by clicking a related topic link), the Eclipse help system retrieves 
the help topic content contributed by a documentation plug-in and displays it in the 
Help view. 

5.1. Contributing Eclipse Context XML Files 
Each plug-in that contributes an Eclipse context XML file must declare an extension to 
org.eclipse.help.contexts in its plug-in manifest (plugin.xml file). For example: 

<extension point="org.eclipse.help.contexts"> 
   <contexts file="dtp_contexts.xml"  
      plugin="org.eclipse.datatools.connectivity.ui"/> 
</extension> 

For more information about Eclipse context XML files and contributing them, see: 
http://help.eclipse.org/help33/topic/org.eclipse.platform.doc.isv/guide/ua_help_context_xml.htm 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 15 of 24 

5.2. Contributing helpKey Properties Files 
Each plug-in that contributes helpKey properties files must declare an extension to 
org.eclipse.datatools.help.helpKeyProperties in its plug-in manifest (plugin.xml file). 
For example: 

<extension point="org.eclipse.datatools.help.helpKeyProperties"> 
  <contextIds  
    plugin="org.eclipse.datatools.connectivity.ui" 
    file="org.eclipse.datatools.connectivity.ui.contextIds.properties"/> 
  <searchExpressions  
    plugin="org.eclipse.datatools.connectivity.ui" 
    file="org.eclipse.datatools.connectivity.ui.searchExpressions.properties"/> 
</extension> 

The <contextIds> element identifies a helpKey properties file that defines help context 
IDs, and the UI plug-in for which it is provided. 
The <searchExpressions> element identifies a helpKey properties file that defines 
context-specific help search expressions, and the UI plug-in for which it is provided. 
To accommodate context-sensitive help plug-ins that serve more than one UI plug-in, the 
<extension> element can contain any number of <contextIds> and <searchExpressions> 
elements. 

5.3. Context-Sensitive Help Plug-in IDs 
Context-sensitive help plug-ins can be supplied as dedicated plug-ins, which point to 
related help topics that are contributed by other, online documentation plug-ins, but do 
not contribute any help topics themselves. 
Dedicated context-sensitive help plug-ins can “mirror” the architecture of the online 
documentation plug-ins. For each plug-in that contributes topics related to help contexts, 
a corresponding context-sensitive help plug-in can be delivered. In that case, the context-
sensitive help plug-in should be named to match its corresponding online documentation 
plug-in. For example: 
• Online documentation plug-in: org.eclipse.datatools.doc.user 
• Context-sensitive help plug-in: org.eclipse.datatools.doc.user.contexts 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 16 of 24 

6. Team Responsibilities and Collaboration 
Successful delivery of dynamic context-sensitive help requires a close coordination of UI 
components and UA components. It imposes responsibilities on both Development teams 
and Documentation teams, and it requires ongoing collaboration among those teams. 
Development teams must provide lists of helpKey constants to Documentation teams, and 
they must provide information about the UI control associated with each helpKey 
constant. Development teams must also provide timely updates to Documentation teams 
when any change occurs in the helpKey constants. 
Documentation teams must rely on the information provided by Development teams to 
locate the UI controls, analyze the help contexts, and create appropriate UA content in 
various formats. 
Since a context-sensitive help plug-in can contribute helpKey properties files and context 
XML files that support several UI plug-ins, Documentation teams must carefully evaluate 
the “component level” with which online documentation plug-ins and their corresponding 
context-sensitive help plug-ins are associated. 
Both Development teams and Documentation teams must rely on the project’s 
architectural specifications to determine the appropriate capabilities and features with 
which to coordinate UI and UA components. 

6.1. Development Team Responsibilities 
Development teams are primarily responsible to: 
• Implement the Eclipse classes and methods necessary to enable dynamic context-

sensitive help for all appropriate UI controls. 
• Implement the interface classes that declare helpKey constants for each UI plug-in. 
• Provide lists of the helpKey constants to Documentation teams in a timely manner. 
Development teams should provide lists of the helpKey constants in the form of Java 
source files for the helpKey constants interface classes. 
Note: Java source files provided as helpKey lists must include the help context comments 

to provide information about each associated UI control. 

6.2. Documentation Team Responsibilities 
Documentation teams are primarily responsible to: 
• Develop context-specific help content and context-specific help search expressions 

for appropriate UI help contexts. 
• Define the concrete help context ID strings that associate abstract help contexts with 

context-specific help content. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 17 of 24 

• Create the Java properties files that define the mapping of abstract help contexts to 
concrete help context IDs. 

• Create the context-sensitive help UA plug-ins that contribute Eclipse context XML 
files and the Java properties files. 

Documentation teams should rely on the Java source files (for the helpKey constants 
interface classes) as the original and definitive sources of all helpKey constant strings. 
Creating the Java properties files can be somewhat automated (e.g., by processing the 
Java source files with a simple perl script). 
Most of the other artifacts required for a context-sensitive help UA plug-in can be 
generated by XSL transformations of a DITA-XML map document. For more 
information, see Defining Context-Sensitive Help Plug-ins with DITA. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 18 of 24 

7. Documentation Team Workflow 
Documentation teams should refer to the product’s architectural specifications to define 
an appropriate architecture (i.e., granularity, content partitioning, plug-in naming, etc.) 
for online documentation plug-ins. With that information, Documentation teams can 
begin the process to create context-sensitive help plug-ins. 
Note: The Documentation team workflow described in this section assumes that 

dedicated context-sensitive help plug-ins will be produced from DITA-XML map 
documents. The workflow can be modified for other help content source formats. 

The following list summarizes the overall Documentation team workflow to create 
context-sensitive help plug-ins: 
1. Get the helpKey list (provided as a Java source file) from the UI Development team 

for each UI plug-in. 

2. Analyze the helpKey list and associated UI controls to define the help contexts. (For 
more information, see Defining Help Context IDs.) 

The Documentation team must determine whether: 
 The helpKey constants alone are sufficient to identify actual help contexts, and 

thus, helpKey constants could map directly to a concrete help context ID, with the 
same string value as the helpKey constant. 

 Distinct help context ID strings must be defined to combine groups of helpKey 
constants into common help contexts. 

Note: It may be preferable to combine help contexts in the helpKey properties file, 
instead of defining the mapping for multiple help contexts to a single topic in a DITA 
map. This is a judgment call for the Documentation team lead, and the IAs 
responsible for maintaining DITA maps. For more information, see Defining Related 
Topics Associated with Help Contexts. 

3. Analyze the help contexts and existing (or planned) help topics to define context-
specific help search expressions. (For more information, see Defining Help Search 
Expressions.)  

4. Create helpKey properties files, based on the content of each Java source file. 

• Define the mapping of helpKey constants to concrete help context IDs and 
context-specific help search expressions, based on results of the help context 
analysis and help topic (content) analysis. 

• Save the helpKey properties files in source control, as appropriate. 
Note: The helpKey properties files are flat ASCII text files, so the authors (or IAs) 

responsible for defining the help context IDs and context-specific help search 
expressions should use a suitable ASCII text editor to create and edit those files. For 
more information about the properties file format, refer to the example in helpKey 
Properties Files. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 19 of 24 

5. Modify existing DITA maps (if used to produce online documentation plug-ins) to 
add the markup for context-sensitive help. For more information, see Defining 
Context-Sensitive Help Plug-ins with DITA. 

7.1. Defining Help Context IDs 
Since helpKey constants are abstract entities in the Java code, and independent of the 
actual help context IDs, Documentation teams are responsible for defining the help 
contexts, which the Eclipse help system uses to locate context-specific help content, and 
associating each helpKey constant with an actual help context ID. 
Additional considerations: 
• Each help context ID represents a single help context, but any one help context could 

occur more than once in a single UI component (i.e., a UI plug-in). Therefore, any 
help context ID can be associated with any number of abstract helpKey constants, but  
 Each helpKey constant must be associated with exactly one help context ID. 

• Each help context within a UI component should be associated with a unique help 
context ID, however 
 Help context IDs need not be unique across all plug-ins. For example, a particular 

help context could be declared by more than one UI plug-in, if the Documentation 
team determines that the actual help context is the same for multiple UI plug-ins. 

7.2. Defining Help Search Expressions 
Each help context should be associated with a context-specific help search expression, 
which the Eclipse help system will use to provide Dynamic Help search results in the 
Help view. 
Documentation teams are responsible for defining the context-specific help search 
expressions for each help context. 
Additional considerations: 
• Each help search expression can be associated with multiple help context IDs, but  

 Each helpKey constant must be associated with exactly one help search 
expression. 

• Each help context within a UI component (i.e., a UI plug-in) can be associated with a 
unique help search expression, however 
 It may be more practical to define a “generic” help search expression for each UI 

component, which would limit search results to product-specific content, rather 
than including all of the help content contributed by any doc plug-in. 

Note: For each helpKey constant, the help context should be defined before the help 
search expression is defined. If the Documentation team chooses to combine multiple 
helpKey constants in a single help context, all of the helpKey constants associated 
with that help context should be associated with the same search expression. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 20 of 24 

7.3. Defining Context-Sensitive Help Plug-ins with DITA 
Any DITA map document that defines an online documentation (doc) plug-in can be 
modified to also define a corresponding context-sensitive help plug-in by inserting the 
appropriate context-related markup. 
Note: The DITA map markup described in the following sections does not require DITA 

specializations; it relies entirely on standard DITA-XML elements and attributes. 

7.3.1. Identifying UI Plug-ins Associated with Help Contexts 
DITA maps for context-sensitive help plug-ins must contain a <topicmeta> element as 
the first child of the <map> element, and for each UI plug-in whose help context IDs are 
identified in the map, that <topicmeta> element must contain one <othermeta> element 
that identifies the UI plug-in. 
Note: The <othermeta> elements that identify UI plug-ins should be the last child 

elements in the <topicmeta> element. The <topicmeta> element may contain any 
other valid child elements (preceding the <othermeta> elements that identify UI plug-
ins). 

The <othermeta> element’s name and content attribute values will be used to identify UI 
plug-ins in the org.eclipse.help.contexts extension, which is declared in the plug-in 
manifest (plugin.xml file) of the context-sensitive help plug-in. For example: 

<map id="org.eclipse.datatools.ui.doc"> 
   <topicmeta> 
      ... 
      <othermeta name="ui-plugin"  
         content="org.eclipse.datatools.connectivity.ui"/> 
      <othermeta name="ui-plugin" 
         content="org.eclipse.datatools.connectivity.ui.dse"/> 
   </topicmeta> 
   ... 
</map> 

The name attribute value "ui-plugin" is a fixed, literal string. The content attribute 
value is the Eclipse plug-in ID of a UI plug-in. 
Note: Nested maps that contribute context-related help topics must include the same 

markup to identify each UI plug-in whose context IDs are identified in that map. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 21 of 24 

7.3.2. Defining Related Topics Associated with Help Contexts 
DITA maps for context-sensitive help plug-ins contain <resourceid> elements, each of 
which identifies a concrete help context ID associated with a DITA topic.  
The <resourceid> element is a child of a <topicmeta> element. For example: 

<topicmeta> 
   <resourceid id="help_context_ID_string"/> 
</topicmeta> 

For each DITA topic associated with a help context ID, the <topicref> element that points 
to that topic contains a <topicmeta> element (with a <resourceid> child element). This 
defines the association of a help context ID with that topic. For example: 

<topicref navtitle="label attribute in contexts.xml topic element" 
   href="path/to/topic.xml"> 
   <topicmeta> 
      <resourceid id="help_context_ID_string"/> 
   </topicmeta> 
</topicref> 

Any DITA topic can be mapped to multiple help context IDs by inserting as many 
<resourceid> child elements as necessary in the <topicmeta> element. For example: 

<topicref navtitle="label attribute in contexts.xml topic element" 
   href="path/to/topic.xml"> 
   <topicmeta> 
      <resourceid id="help_context_ID_1"/> 
      <resourceid id="help_context_ID_2"/> 
      <resourceid id="help_context_ID_3"/> 
   </topicmeta> 
</topicref> 

Note: It may be preferable to combine help contexts in the helpKey properties file, 
instead of defining mapping for multiple help contexts to a single topic in the DITA 
map. This is a judgment call for the Documentation team responsible for maintaining 
the DITA map. For more information, see Defining Help Context IDs. 

Other considerations for DITA maps that define context-sensitive help plug-ins: 
• Markup for context-to-topic mapping is needed only for the DITA topics that will be 

context-sensitive help targets (i.e., Related Topics shown in the Help view). 
• When a single DITA topic appears more than once in a map, only the first instance of 

a <topicref> that points to that topic needs the context-sensitive help markup. 
• Nested maps that contribute DITA topics related to help contexts must include the 

same context-sensitive help markup. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 22 of 24 

7.3.3. Context-Specific Help Content 
Each <topicmeta> element that wraps a <resourceid> element may optionally contain one 
<searchtitle> element or one <shortdesc> element, or both (one of each): 
• The <searchtitle> element is used to supply the value of the title attribute on the 

<context> element in the Eclipse context XML file. 
• The <shortdesc> element is used to supply the content of the <description> element 

in the Eclipse context XML file. 
For example: 

<topicref navtitle="label attribute in contexts.xml topic element" 
   href="path/to/topic.xml"> 
   <topicmeta> 
      <searchtitle>Optional text to override the help About title. 
      </searchtitle> 
      <shortdesc>Text for context description.</shortdesc> 
      <resourceid id="help_context_ID_string"/> 
   </topicmeta> 
</topicref> 

Note: The <searchtitle>, <shortdesc>, and <resourceid> elements must appear in the 
<topicmeta> element in the order shown above. 

The following illustration shows how the <searchtitle> and <shortdesc> elements in a 
DITA map can be transformed into markup in the Eclipse context XML file, and how 
those items in the context XML file provide the context-specific content rendered in the 
Help view. 

 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 23 of 24 

8. Testing Dynamic Context-Sensitive Help 
Dynamic context-sensitive help in Eclipse involves complex interactions between several 
components, so testing it requires a properly configured runtime platform, with both user 
interface (UI) components and user assistance (UA) components installed. 
Like any other functionality, dynamic context-sensitive help should be tested to assess its 
quality.  
Note: This document deals with testing the functionality of dynamic context-sensitive 

help, not the quality (or usefulness) of the help content. 

8.1. Test Objectives 
For projects that use the DTP help-helper, there are two primary objectives in testing 
dynamic context-sensitive help: 
• Determine if all abstract helpKey constants are mapped to concrete help context IDs 

(e.g., by comparing the contexts XML file with helpKey properties files) 
• Determine if help context IDs work correctly, providing the correct context-specific 

help content in the Help view or dialog tray 

8.2. Test Procedures 
For each UI control associated with a help context, test procedures should verify the 
following: 
• Keyboard shortcut (e.g., F1) opens the Help view or dialog tray, with correct context-

specific content 
• Help icon (if available) opens the Help view or dialog tray, with correct context-

specific content 
• Changing focus on the UI control invokes refresh in the open Help view or dialog 

tray (dynamic context-specific content) 

8.3. Plug-in Spy 
The Plug-in Spy tool (provided in org.eclipse.pde.runtime, since Eclipse 3.4) shows 
various information about the workbench, including help context IDs associated with the 
current (in focus) UI control. This is particularly useful for testing and troubleshooting 
context-sensitive help. 



DTP Help-Helper  2008-05-21 

 Copyright © 2007-2008 Sybase, Inc.  All rights reserved. 
 Made available under terms of the EPL v1.0. 

 Page 24 of 24 

9. Legal Notices 
Sybase® is a registered trademark of Sybase, Inc. 
Eclipse and Data Tools Platform are trademarks of Eclipse Foundation, Inc. 
Java and all Java-based marks are trademarks or registered trademarks of Sun 
Microsystems, Inc. in the U.S. and other countries. 
All other company and product names mentioned may be trademarks of the respective 
companies with which they are associated. 
 
Copyright © 2007-2008 Sybase, Inc. All rights reserved.  
This document is made available under terms of the EPL v1.0. 
http://www.eclipse.org/legal/epl-v10.html 
 
Sybase, Inc. 
One Sybase Drive 
Dublin, CA 94568 
http://www.sybase.com 
 


