
1. Project Overview
The connectivity project is composed of the following components:

 Driver management framework
 Connection profile framework
 Connection management layer
 Extension implementations supporting generic JDBC connections

2. Driver Management Framework
The driver management framework provides the user with a mechanism for defining
driver definitions based on driver templates. Specific driver templates are supplied by
developers through an Eclipse extension point.

Driver templates are designed to allow users to quickly and easily create driver
definitions for specific server types. The template may specify a list of libraries required
for connecting to the server, a list of default property values to be used when creating new
connection profiles (e.g. driver class name, default connection port, etc.), and other
information that may be used when opening a connection.

Driver definitions are created from driver templates by the user. The user has the option
of overriding and/or supplementing the default values specified in the template (e.g.
specifying different JAR files, a different default connection port, etc.). Driver
definitions may be referenced from and used by connection profiles when opening
connections to a server.

2.1. Extension Point
The driver management extension point gives the developer the ability to define the
following:

 Categories for driver templates/definitions
 Classpath/list of required JAR files
 User editable properties (e.g. port, uid)
 Hidden properties (e.g. driver class)

2.2. API
The driver management API is intended to allow developers to create, modify or
delete driver definition instances. It also gives developers access to the properties
defined in driver definition instances.

2.3. User Interface
A preference page will be provided allowing users to create driver definition instances
from the driver templates defined through the extension point. The preference page
should look something like this,

3. Connection Profile Framework
The connection profile framework provides the user with a mechanism for defining
connection profiles. Specific connection profile types (or classes) are supplied by
developers through an Eclipse extension point.

A connection profile is used to define all the information required to connect to a server.
This information may include a reference to a driver definition instance specifying the
classpath to be used for loading the driver, a user ID, port, host, etc. This information is
used when opening connections to a server.

3.1. Extension Point
The connection profile extension point gives the developer the ability to define the
following:

 Categories for connection profiles
 Connection profile types
 Connection factories for opening connections
 Wizards for creating connection profiles

A connection profile may have one or more connection factories associated with it
(for example, an application server may have a connection factories that create
connections for accessing/manipulating J2EE objects (EARs, EJBs, WARs, etc.),
JMS functionality on the server, etc. By convention, connection factories should be
IDed by the interface of the connection object they create (e.g. java.sql.Connection for
databases). This allows a general UI feature set to be developed for working with any
type of connection profile, provided a connection factory of the appropriate type is
defined for that connection profile type.

3.2. API
The connection profile API is intended to allow developers to create, modify and
delete connection profile instances; to open connections to servers (through provided
connection factories); to access properties defined on connection profile instances; to
be notified of changes to connection profiles (e.g. create, modify, delete).

3.3. User Interface
A generic new wizard will be provided. This wizard will allow the user to select from
a list of new wizards provided for each connection profile type (similar to the existing
“File->New…” wizard).

For DTP, a “Data Source Explorer” view will be provided. This view will display
connection profiles that can be used with other DTP components (e.g. SQL editor).
Navigator extensions should be provided for displaying the contents of the DB (as the
current servers view in WTP does).

4. Connection Management Layer
The connection management layer is intended to provide functionality enabling
connection sharing between tooling components.1

Some issues that need to be addressed:
 Transactions2

 Investigate using J2EE connectors3

 Connection events (e.g. connect, disconnect, reconnect)
 Offline capability4

 Others?

4.1. API

4.2. User Interface
A generic login dialog should be provided.5

5. Generic JDBC Extension Implementations
Driver definition and connection profile extensions should be implemented that allow the
user to work with any type of JDBC accessible data source. Specific vendors may
provide additional driver definition and connection profile extensions that are tailored to
their specific DB.

5.1. Driver Definition Extension
The driver definition extension should allow the user to specify a list of required JAR
files (i.e. classpath) and the driver class name.

5.2. Connection Profile Extension
The connection profile extension should allow the user to specify a driver definition,
connection URL, UID and PWD for connecting to a DB.

Connection factories should be implemented for creating java.sql.Connection objects
and SQL model objects.

1 Currently, only a simple connection management mechanism is implemented (i.e. more design work is
necessary for this component). We might consider generalizing the functionality already present in the
RDB implementation.
2 One idea that came up during the consolidation meetings was to have a globally shared read-only
connection and any tooling requiring write-access would need to use a clone of the shared connection. (The
issue here was how to address sharing between components that may make updates to the DB, e.g. multiple
editors can be acting on a single DB).
3 This was another idea that came up during the consolidation meetings. This would require changes to the
existing connection profile management code. This might be a good way to go if there is an existing open
source solution compatible with the EPL. We’d also need to look at how the driver management framework
would be impacted.
4 This is supported through the SQL model (or is it the DB definition model).
5 The current implementation stores both UID and PWD in the connection profile. This is a deviation from
the existing RDB implementation. If this is provided, we should probably standardize property keys for
commonly used properties (e.g. UID, URL, host, port, etc.; we might want to do this anyway).

A property page should also be supplied for editing existing generic JDBC connection
profiles.

6. Project Integration
This section describes how the connectivity layer might be used by other components
within Eclipse.

6.1. DTP – Model Base

6.1.1. Database Definition Model
The database definition model should probably be associated with a driver
definition as a hidden property.6

6.1.2. SQL Model
The SQL model instance for the DB should be accessible from a connection
profile through a connection factory. This will allow any consumer access to the
SQL model instance in a generic way (assuming the ID convention noted above is
used). This should also be integrated with the connection management layer to
support offline capabilities.

6.2. DTP – SQL Development Tools

6.3. BIRT
ODA data sources may be represented using a driver definition/connection profile
pair. A specific connection factory type could be defined for supplying connection
types known by BIRT tooling.

6.3.1. JDBC Data Sources
It may be possible to implement the appropriate ODA interfaces using an
underlying JDBC or SQL model connection. If so, existing DB connection
profiles could be extended by providing an ODA connection factory using the
default implementation. (The generic implementation could have a protected
method used for creating the JDBC connection. This would be implemented by
the vendor providing support for BIRT. Presumably, there would be a generic
implementation extending the generic JDBC connection profile supplied by DTP.)

6 The assumption here is that the DB definition model being referenced is probably specific to the driver
being used and is at least specific to the physical DB being supported by the driver definition.

