
DRAFT

Eclipse Platform Technical Overview 1

Eclipse Platform Technical Overview

© IBM Corporation and The Eclipse Foundation, 2001, 2003, 2005. All rights reserved.

This document is made available under the Eclipse Public License (EPL)
1

December 2005 (updated for 3.1; originally published July 2001)

Abstract: The Eclipse Platform is designed for building integrated development environments

(IDEs), and arbitrary tools. This paper is a general technical introduction to the Eclipse Platform.

Part I presents a technical overview of its architecture. Part II is a case study of how the Eclipse

Platform was used to build a full-featured Java development environment.

Contents

Introduction
Part I: Eclipse Platform Technical Overview

Platform Runtime and Plug-in Architecture
Workspaces
Workbench_and_UI_Toolkits

SWT
JFace
Workbench
UI_Integration

Team Support
Help
Epilogue

Part II: Case Study of Using the Eclipse Platform - Java Development Tooling
JDT_Features
JDT Implementation

Java_Projects
Java_Compiler
Java_Model
Java_UI
Java Run and Debug

Epilogue

1
 http://eclipse.org/org/documents/epl-v10.php

DRAFT

Eclipse Platform Technical Overview 2

Introduction

Eclipse is an open source community whose projects are focused on providing an extensible

development platform and application frameworks for building software. Eclipse provides

extensible tools and frameworks that span the software development lifecycle, including support

for modeling, language development environments for Java, C/C++ and others, testing and

performance, business intelligence, rich client applications and embedded development. A large,

vibrant ecosystem of major technology vendors, innovative start-ups, universities and research

institutions and individuals extend, complement and support the Eclipse Platform.

When people speak of Eclipse, they very often mean the Eclipse Software Development Kit

(SDK) which is both the leading Java™ integrated development environment (IDE) and the

single best tool available for building products based on the Eclipse Platform. The Eclipse SDK,

a critical piece of the Eclipse tapestry, is a combination of the efforts of several Eclipse projects:

Platform, Java Development Tools (JDT), and the Plug-in Development Environment (PDE).

These pieces combine to form the Eclipse SDK, but they are not interdependent. That is, Eclipse

is a Java IDE only because the JDT components are included. If the JDT components are, for

example, replaced by C/C++ development tools, then Eclipse becomes a C/C++ development

environment. In fact, it is possible to make Eclipse into both a Java and C/C++ IDE by including

the appropriate components.

The Eclipse Platform is itself a composition of components. In its entirety, the Eclipse Platform

contains the functionality required to build an IDE. However, by using subset of these

components, it is possible to build arbitrary applications. The Eclipse Rich Client Platform

(RCP) is one such subset of components. Figure 1 shows a representation of some of the

components in the Eclipse Platform (in reality there are a great many more components) and

highlights the subset that makes up the RCP.

Figure 1 - The Eclipse Rich Client Platform (RCP) is a subset of the Eclipse Platform.

Eclipse Platform is more than just a foundation for building development environments: it is a

foundation for building arbitrary tools and applications. The RCP can (and has) been used to

DRAFT

Eclipse Platform Technical Overview 3

build a diverse set of rich client applications that have nothing to do with software development

in diverse areas that include banking, automotive, medical, and space exploration. As the name

"rich client" implies, Eclipse RCP is an excellent platform for building applications that work in

conjunction with application servers, databases, and other backend resources to deliver a rich

user experience on the desktop.

One of the key benefits of the Eclipse Platform is realized by its use as an integration point. By

building your tools or applications on top of Eclipse Platform, you enable your application to

integrate with other tools and applications also written using the Eclipse Platform. The Eclipse

Platform is made in a Java IDE by adding Java development components (e.g. the JDT) and it is

made into a C/C++ IDE by adding C/C++ development components (e.g. the CDT). It is made

into both a Java and C/C++ development environment by adding both sets of components.

Eclipse Platform integrates the individual tools into a single product providing a rich and

consistent experience for its users.

Integration extends into the rich client space as well. An organization can split up the

development of application components across development teams and then integrate the results

using the Eclipse Rich Client Platform. This doesn't trivialize the process of developing large

scale applications, but it does make the integration easier.

Perhaps the most obvious thing that the Eclipse Platform provides is a managed windowing

system. User interface components are part of this (including entry fields, push buttons, tables,

and tree views), but there's more. The platform provides window lifecycle management, docking

views and editors, the ability to contribute menu items and tool bars, and drag and drop.

Figure 2 shows a screen capture of the main workbench window as it looks with only the

standard generic components that are part of the Eclipse Platform.

DRAFT

Eclipse Platform Technical Overview 4

Figure 2 - The Eclipse Platform User Interface.

The navigator view (Figure 2, top left) shows the files in the user's workspace; the text editor

(top right) shows the content of a file; the tasks view (bottom right) shows a list of to-dos; the

outline view (bottom left) shows a content outline of the file being edited (not available for plain

text files).

Although the Eclipse Platform has a lot of built-in functionality, most of that functionality is very

generic. It takes additional tools to extend the Platform to work with new content types, to do

new things with existing content types, and to focus the generic functionality on something

specific.

The Eclipse Platform is built on a mechanism for discovering, integrating, and running modules

called plug-ins or bundles based on the OSGi R4
2
 specification. A tool provider writes a tool as a

separate plug-in that operates in the environment and surfaces its tool-specific UI in the

workbench. When the Platform is launched, the user is presented with an integrated development

environment (IDE) composed of the set of available plug-ins. The quality of the user experience

depends significantly on how well the tools integrate with the Platform and how well the various

tools work with each other.

2
 http://osgi.org

DRAFT

Eclipse Platform Technical Overview 5

Part I: Eclipse Platform Technical Overview

If you build it, they will come.
---W.P. Kinsella, Field of Dreams (1989)

The Eclipse Platform (or simply "the Platform" when there is no risk of confusion) is designed

and built to meet the following requirements:

• Support the construction of a variety of tools for application development.

• Support an unrestricted set of tool providers, including independent software vendors (ISVs).

• Support tools to manipulate arbitrary content types (e.g., HTML, Java, C, JSP, EJB, XML,

and GIF).

• Facilitate seamless integration of tools within and across different content types and tool

providers.

• Support both GUI and non-GUI-based application development environments.

• Run on a wide range of operating systems, including Windows
®
, Linux

TM
, Mac OSX, Solaris

AIX, and HP-UX

• Capitalize on the popularity of the Java programming language for writing tools.

The Eclipse Platform's principal role is to provide tool providers with mechanisms to use, and

rules to follow, that lead to seamlessly-integrated tools. These mechanisms are exposed via well-

defined API interfaces, classes, and methods. The Platform also provides useful building blocks

and frameworks that facilitate developing new tools.

Figure 3 shows the major components, and APIs, of the Eclipse Platform.

DRAFT

Eclipse Platform Technical Overview 6

Figure 3 - Eclipse Platform architecture.

Platform Runtime and Plug-in Architecture

A plug-in is the smallest unit of Eclipse Platform function that can be developed and delivered

separately. Usually a small tool is written as a single plug-in, whereas a complex tool has its

functionality split across several plug-ins. Except for a small kernel known as the Platform

Runtime, all of the Eclipse Platform's functionality is located in plug-ins.

Plug-ins are coded in Java. A typical plug-in consists of Java code in a Java Archive (JAR)

library, some read-only files, and other resources such as images, web templates, message

catalogs, native code libraries, etc. Some plug-ins do not contain code at all. One such example is

a plug-in that contributes online help in the form of HTML pages. A single plug-in's code

libraries and read-only content are located together in a directory in the file system, or at a base

URL on a server. There is also a mechanism that permits a plug-in to be synthesized from several

separate fragments, each in their own directory or URL. This is the mechanism used to deliver

separate language packs for an internationalized plug-in.

Each plug-in’s configuration is described by a pair of files. The manifest file, manifest.mf,

declares essential information about the plug-in, including the name, version, and dependencies

to other plug-ins. The second optional file, plugin.xml, declares the plug-in’s interconnections to

other plug-ins. The interconnection model is simple: a plug-in declares any number of named

extension points, and any number of extensions to one or more extension points in other plug-ins.

A plug-in’s extension points can be extended by other plug-ins. For example, the workbench

plug-in declares an extension point for user preferences. Any plug-in can contribute its own user

DRAFT

Eclipse Platform Technical Overview 7

preferences by defining extensions to this extension point.

An extension point may have a corresponding API interface. Other plug-ins contribute

implementations of this interface via extensions to this extension point. Any plug-in is free to

define new extension points and to provide new API for other plug-ins to use.

On start-up, the Platform Runtime discovers the set of available plug-ins, reads their manifest

files, and builds an in-memory plug-in registry. The Platform matches extension declarations by

name with their corresponding extension point declarations. Any problems, such as extensions to

missing extension points, are detected and logged. The resulting plug-in registry is available via

the Platform API. After startup, plug-ins can be unloaded, and new ones installed (new versions

of existing plug-ins can also replace existing versions).

The plugin.xml file contains XML. An extension point may declare additional specialized XML

element types for use in the extensions. This allows the plug-in supplying the extension to

communicate arbitrary information to the plug-in declaring the corresponding extension point.

Moreover, configuration information is available from the plug-in registry without activating the

contributing plug-in or loading of any of its code. This property is key to supporting a large base

of installed plug-ins only some of which are needed in any given user session. Until a plug-in's

code is loaded, it has a negligible memory footprint and impact on start-up time. Using an XML-

based plug-in manifest also makes it easier to write tools that support plug-in creation. The Plug-

In Development Environment (PDE), which is included in the Eclipse SDK, is such a tool.

A plug-in is activated when its code actually needs to be run. Once activated, a plug-in uses the

plug-in registry to discover and access the extensions contributed to its extension points. For

example, the plug-in declaring the user preference extension point can discover all contributed

user preferences and access their display names to construct a preference dialog. This can be

done using only the information from the registry, without having to activate any of the

contributing plug-ins. The contributing plug-in will be activated when the user selects a

preference from a list. Activating plug-ins in this manner does not happen automatically; there

are a small number of API methods for explicitly activating plug-ins. Once activated, a plug-in

remains active until it is explicitly deactivated or the Platform shuts down. Each plug-in is

furnished with a subdirectory in which to store plug-in-specific data; this mechanism allows a

plug-in to carry over important state between runs.

The Platform Runtime declares a special extension point for applications. When an instance of

the Platform is launched, the name of an application is specified via the command line; the only

plug-in that gets activated initially is the one that declares that application.

By determining the set of available plug-ins up front, and by supporting a significant exchange of

information between plug-ins without having to activate any of them, the Platform can provide

each plug-in with a rich source of pertinent information about the context in which it is

operating. This context cannot change while the Platform is running, so there is no need for

complex life cycle events to inform plug-ins when the context changes. A lengthy start-up

sequence is avoided, as is a common source of bugs stemming from unpredictable plug-in

activation order.

The Eclipse Platform is run by a single invocation of a standard Java virtual machine. Each plug-

DRAFT

Eclipse Platform Technical Overview 8

in is assigned its own Java class loader that is solely responsible for loading its classes (and Java

resource bundles). Each plug-in explicitly declares its dependence on other plug-ins from which

it expects to directly access classes, and controls the visibility to dependent plug-ins of the public

classes and interfaces in its libraries. This information is declared in the plug-in manifest file; the

visibility rules are enforced at runtime by the plug-in class loaders.

The plug-in mechanism is used to partition the Eclipse Platform itself. Indeed, separate plug-ins

provide the workspace, the workbench, and so on. Even the Platform Runtime itself has its own

plug-in. Non-GUI configurations of the Platform may simply omit the workbench plug-in and

the other plug-ins that depend on it.

The Eclipse Platform's update manager downloads and installs new features or upgraded

versions of existing features (a feature being a group of related plug-ins that get installed and

updated together). The update manager constructs a new configuration of available plug-ins to be

used the next time the Eclipse Platform is launched. If the result of upgrading or installing proves

unsatisfactory, the user can roll back to an earlier configuration.

The Eclipse Platform Runtime also provides a mechanism for extending objects dynamically. A

class that implements an “adaptable” interface declares its instances open to third party behavior

extensions. An adaptable instance can be queried for the adapter object that implements an

interface or class. For example, workspace resources are adaptable objects; the workbench adds

adapters that provide a suitable icon and text label for a resource. Any party can add behavior to

existing types (both classes and interfaces) of adaptable objects by registering a suitable adapter

factory with the Platform. Multiple parties can independently extend the same adaptable objects,

each for a different purpose. When an adapter for a given interface is requested, the Platform

identifies and invokes the appropriate factory to create it. The mechanism uses only the Java type

of the adaptable object (it does not increase the adaptable object's memory footprint). Any plug-

in can exploit this mechanism to add behavior to existing adaptable objects, and to define new

types of adaptable objects for other plug-ins to use and possibly extend.

Workspaces

The various tools plugged in to the Eclipse Platform operate on regular files in the user's

workspace. The workspace consists of one or more top-level projects, where each project maps

to a corresponding user-specified directory in the file system. The different projects in a

workspace may map to different file system directories or drives, although, by default, all

projects map to sibling subdirectories of a single workspace directory.

A project nature mechanism allows a tool to tag a project in order to give it a particular

personality, or nature. For example, the web site nature tags a project that contains the static

content for a web site, and the Java nature tags a project that contains the source code for a Java

program. Plug-ins may declare new project natures and provide code for configuring projects

with that nature. A single project may have as many natures as required. This affords a way for

tools to share a project without having to know about each other.

Each project contains files that are created and manipulated by the user. All files in the

workspace are directly accessible to the standard programs and tools of the underlying operating

system. Tools integrated with the Platform are provided with API for dealing with workspace

DRAFT

Eclipse Platform Technical Overview 9

resources (the collective term for projects, files, and folders). Workspace resources are

represented by adaptable objects so that other parties can extend their behavior.

To minimize the risk of accidentally losing files, a low-level workspace history mechanism

keeps track of the previous content of any files that have been changed or deleted by integrated

tools. The user controls how the history is managed via space- and age-based preference settings.

The workspace provides a marker mechanism for annotating resources. Markers are used to

record diverse annotations such as compiler error messages, to-do list items, bookmarks, search

hits, and debugger breakpoints. The marker mechanism is open. Plug-ins can declare new

marker subtypes and control whether they should be saved between runs.

The Platform provides a general mechanism that allows a tool to track changes to workspace

resources. By registering a resource change listener, a tool is guaranteed to receive after-the-fact

notifications of all resource creations, deletions, and changes to the content of files. The Platform

defers the event notification until the end of a batch of resource manipulation operations. Event

reports take the form of a tree of resource deltas that describe the effect of the entire batch of

operations in terms of net resource creations, deletions, and changes. Resource deltas also

provide information about changes to markers.

Resource tree deltas are particularly useful and efficient for tools that display resource trees,

since each delta points out where the tool may need to add, remove, or refresh on-screen widgets.

In addition, since a number of semi-independent tools may be operating on the resources of a

project at the same time, this mechanism allows one tool to detect the activity of another in the

vicinity of specific files, or file types, in which it has an interest.

Tools like compilers and link checkers must apply a coordinated analysis and transformation of

thousands of separate files. The Platform provides an incremental project builder framework; the

input to an incremental build is a resource tree delta capturing the net resource differences since

the last build. Sophisticated tools may use this mechanism to provide scalable solutions.

The Platform allows several different incremental project builders to be registered on the same

project and provides ways to trigger project and workspace-wide builds. An optional workspace

auto-build feature automatically triggers the necessary builds after each resource modification

operation (or batch of operations).

The workspace save-restore process is open to participation from plug-ins wishing to remain

coordinated with the workspace across sessions. A two-phase save process ensures that the

important state of the various plug-ins are written to disk as an atomic operation. In a subsequent

session, when an individual plug-in gets reactivated and rejoins the save-restore process, it is

passed a workspace-wide resource delta describing the net resource differences since the last

save in which it participated. This allows a plug-in to carry forward its saved state while making

the necessary adjustments to accommodate resource changes made while it was deactivated.

Workbench and UI Toolkits

The Eclipse Platform UI is built around a workbench that provides the overall structure and

presents an extensible UI to the user. The workbench API and implementation are built from two

toolkits:

DRAFT

Eclipse Platform Technical Overview 10

• SWT - a widget set and graphics library integrated with the native window system but with

an OS-independent API.

• JFace - a UI toolkit implemented using SWT that simplifies common UI programming tasks.

SWT

The Standard Widget Toolkit (SWT) provides a common OS-independent API for widgets and

graphics implemented in a way that allows tight integration with the underlying native window

system. The entire Eclipse Platform UI, and the tools that plug in to it, use SWT for presenting

information to the user.

A perennial issue in widget toolkit design is the tension between portable toolkits and native

window system integration. Java’s Abstract Window Toolkit (AWT) provides low-level widgets

such as lists, text fields, and buttons, but no high-level widgets such as trees or rich text. AWT

widgets are implemented directly with native widgets on all underlying window systems.

Building a UI using AWT alone means programming to the least common denominator of all OS

window systems. The Java Swing toolkit addresses this problem by emulating widgets like trees,

tables, and rich text. Swing also provides look and feel emulation layers that attempt to make

applications look like the underlying native window system. However, the emulated widgets

invariably lag behind the look and feel of the native widgets, and the user interaction with

emulated widgets is usually different enough to be noticeable, making it difficult to build

applications that compete head-on with shrink-wrapped applications developed specifically for a

particular native window system.

SWT addresses this issue by defining a common API that is available across a number of

supported window systems. For each different native window system, the SWT implementation

uses native widgets wherever possible; where no native widget is available, the SWT

implementation provides a suitable emulation. Common low-level widgets such as lists, text

fields, and buttons are implemented natively everywhere. But some generally useful higher-level

widgets may need to be emulated on some window systems. For example, the SWT toolbar

widget is implemented as a native toolbar widget on Windows, and as an emulated widget on

Motif
®
. This strategy allows SWT to maintain a consistent programming model in all

environments, while allowing the underlying native window system's look and feel to shine

through to the greatest extent possible.

SWT also exposes native window system-specific API in cases where a particular underlying

native window system provides a unique and significant feature unavailable on other window

systems. Windows ActiveX
®
 is a good example of this. Window system-specific API is

segregated into aptly named packages to indicate the fact that it is inherently non-portable.

Tight integration with the underlying native window system is not strictly a matter of look and

feel. SWT also interacts with native desktop features such as drag and drop, and can use

components developed with OS component models, like Windows ActiveX controls.

Internally, the SWT implementation provides separate and distinct implementations in Java for

each native window system. The Java native libraries are completely different, with each

surfacing the APIs specific to the underlying window system. (Contrast this to Java AWT, which

locates window system-specific differences in the C code implementation of a common set of

DRAFT

Eclipse Platform Technical Overview 11

Java native methods.) Because no special logic is buried in the natives, the SWT implementation

is expressed entirely in Java code. Nevertheless, the Java code looks familiar to the native OS

developer. Any Windows programmer would find the Java implementation of SWT for

Windows instantly familiar, since it consists of calls to the Windows API that they already know

from programming in C. Likewise for a Motif programmer looking at the SWT implementation

for Motif. This strategy greatly simplifies implementing, debugging, and maintaining SWT

because it allows all interesting development to be done in Java. Of course, this is of no direct

concern for ordinary clients of SWT since these natives are completely hidden behind the

window system-independent SWT API.

JFace

JFace is a UI toolkit with classes for handling many common UI programming tasks. JFace is

window-system-independent in both its API and implementation, and is designed to work with

SWT without hiding it.

JFace includes the usual UI toolkit components of image and font registries, dialog, preference,

and wizard frameworks, and progress reporting for long running operations. Two of its more

interesting features are actions and viewers.

The action mechanism allows user commands to be defined independently from their exact

whereabouts in the UI. An action represents a command that can be triggered by the user via a

button, menu item, or item in a tool bar. Each action knows its own key UI properties (label,

icon, tool tip, etc.) which are used to construct appropriate widgets for presenting the action. This

separation allows the same action to be used in several places in the UI, and means that it is easy

to change where an action is presented in the UI without having to change the code for the action

itself.

Viewers are model-based adapters for certain SWT widgets. Viewers handle common behavior

and provide higher-level semantics than available from the SWT widgets. The standard viewers

for lists, trees, and tables support populating the viewer with elements from the client's domain

and keeping the widgets in synch with changes to that domain. These viewers are configured

with a content provider and a label provider. The content provider knows how to map the

viewer's input element to the expected viewer content, and how to parlay domain changes into

corresponding viewer updates. The label provider knows how to produce the specific string label

and icon needed to display any given domain element in the widget. Viewers can optionally be

configured with element-based filters and sorters. Clients are notified of selections and events in

terms of the domain elements they provide to the viewer. The viewer implementation handles the

mapping between domain elements and SWT widgets, adjusting for a filtered view of the

elements, and re-sorting when necessary. The standard viewer for text supports common

operations such as double click behavior, undo, coloring, and navigating by character index or

line number. Text viewers provide a document model to the client and manage the conversion of

the document to the information required by the SWT styled text widget. Multiple viewers can

be open on the same model or document; all are updated automatically when the model or

document changes in any of them.

DRAFT

Eclipse Platform Technical Overview 12

Workbench

Unlike SWT and JFace, which are both general purpose UI toolkits, the workbench provides the

UI personality of the Eclipse Platform, and supplies the structures in which tools interact with the

user. Because of this central and defining role, the workbench is synonymous with the Eclipse

Platform UI as a whole and with the main window the user sees when the Platform is running

(see Figure 2). The workbench API is dependent on the SWT API, and to a lesser extent on the

JFace API. The workbench implementation is built using both SWT and JFace; Java AWT and

Swing are not used.

The Eclipse Platform UI paradigm is based on editors, views, and perspectives. From the user's

standpoint, a workbench window consists visually of views and editors. Perspectives manifest

themselves in the selection and arrangements of editors and views visible on the screen.

Editors allow the user to open, edit, and save objects. They follow an open-save-close lifecycle

much like file system based tools, but are more tightly integrated into the workbench. When

active, an editor can contribute actions to the workbench menus and tool bar. The Platform

provides a standard editor for text resources; more specific editors are supplied by other plug-ins.

Views provide information about some object that the user is working with in the workbench. A

view may assist an editor by providing information about the document being edited. For

example, the standard content outline view shows a structured outline for the content of the

active editor if one is available. A view may augment other views by providing information

about the currently selected object. For example, the standard properties view presents the

properties of the object selected in another view. Views have a simpler lifecycle than editors:

modifications made in a view (such as changing a property value) are generally saved

immediately, and the changes are reflected immediately in other related parts of the UI. The

Platform provides several standard views (see Figure 2); additional views are supplied by other

plug-ins.

A workbench window can have several separate perspectives, only one of which is visible at any

given moment. Each perspective has its own views and editors that are arranged (tiled, stacked,

or detached) for presentation on the screen (some may be hidden at any given moment). Several

different types of views and editors can be open at the same time within a perspective. A

perspective controls initial view visibility, layout, and action visibility. The user can quickly

switch perspective to work on a different task, and can easily rearrange and customize a

perspective to better suit a particular task. The Platform provides standard perspectives for

general resource navigation, online help, and team support tasks. Additional perspectives are

supplied by other plug-ins.

Tools integrate into this editors-views-perspectives UI paradigm in well-defined ways. The main

extension points allow tools to augment the workbench:

• Add new types of editors.

• Add new types of views.

• Add new perspectives, which arrange old and new views to suit new user tasks.

The Platform's standard views and editors are all contributed using these mechanisms.

DRAFT

Eclipse Platform Technical Overview 13

Tools may also augment existing editors, views, and perspectives:

• Add new actions to an existing view's local menu and tool bar.

• Add new actions to the workbench menu and tool bar when an existing editor becomes

active.

• Add new actions to the pop-up content menu of an existing view or editor.

• Add new views, action sets, and shortcuts to an existing perspective.

The Platform takes care of all aspects of workbench window and perspective management.

Editors and views are automatically instantiated as needed, and disposed of when no longer

needed. The display labels and icons for actions contributed by a tool are listed in the plug-in

manifest so that the workbench can create menus and tool bars without activating the

contributing plug-ins. The workbench does not activate the plug-in until the user attempts to use

functionality that the plug-in provides.

Once an editor or view becomes an active part of a perspective it can use workbench services for

tracking activation and selection. The part service tracks view and editor activation within the

perspective, reporting activation and deactivation events to registered listeners. A view or editor

can also register with the selection service as a source for selections. The selection service feeds

selection change events to all parties that have registered interest. This is how, for example, the

standard properties view is notified of the domain object selected in the currently active editor or

view.

UI Integration

Tools written in Java using the Platform APIs achieve the highest level of integration with the

Platform. At the other extreme, external tools launched from within the Platform must open their

own separate windows in order to communicate with the user and must access user data via the

underlying file system. Their integration is therefore very loose, especially at the UI level. In

some environments, the Eclipse Platform also supports levels of integration between these

extremes:

• The workbench has built-in support for embedding any OLE document as an editor

(Windows only). This option provides tight UI integration.

• A plug-in tool can implement a container that bridges the Eclipse Platform API to an

ActiveX control so that it can be used in an editor, view, dialog, or wizard (Windows only).

SWT provides the requisite low-level support. This option provides tight UI integration.

• A plug-in tool can use AWT or Swing to open separate windows. This option provides loose

UI integration, but allows tight integration below the UI.4

4Of course, AWT and Swing would need to be present in the configuration of the underlying Java runtime environment
that runs the Eclipse Platform.

DRAFT

Eclipse Platform Technical Overview 14

Team Support

The Eclipse Platform allows a project in the workspace to be placed under version and

configuration management with an associated team repository. The Platform has extension points

and a repository provider API that allow new kinds of team repositories to be plugged in.

The function provided by a particular team repository product invariably affects the user’s

workflow, for example, by adding overt steps for retrieving files from the repository, for

returning updated files to the repository, and for comparing different file versions. The exact

effect on the user’s workflow varies somewhat for each different kind of repository.

Accordingly, the Eclipse Platform takes a hands-off view and allows each team repository

provider to define its own workflow so that users already familiar with the team repository

product can quickly learn to use it from within Eclipse. The Platform supplies basic hooks to

allow a team repository provider to intervene in certain operations that manipulate resources in a

project. These hooks provide good support for both optimistic and pessimistic models. At the UI

level, the Platform supplies placeholders for certain actions, preferences, and properties, but

leaves it to each repository provider to define these UI elements. There is also a simple,

extendable configuration wizard that lets users associate projects with repositories, which each

repository provider can extend with UI elements for collecting information specific to that kind

of repository.

Multiple team repository providers can coexist peacefully within the Platform. The Eclipse

Platform includes support for CVS repositories accessed via either pserver or ssh protocols.

Help

The Eclipse Platform Help mechanism allows tools to define and contribute documentation to

one or more online books. For example, a tool usually contributes help style documentation to a

user guide, and API documentation (if it has any) to a separate programmer guide.

Raw content is contributed as HTML files. The facilities for arranging the raw content into

online books with suitable navigation structures are expressed separately in XML files. This

separation allows pre-existing HTML documentation to be incorporated directly into online

books without needing to edit or rewrite them.

The add-on navigation structure presents the content of the books as a tree of topics. Each topic,

including non-leaf topics, can have a link to a raw content page. A single book may have

multiple alternate lists of top-level topics allowing some or all of the same information to be

presented in completely different organizations; for example, organized by task or by tool.

The XML navigation files and HTML content files are stored in a plug-in's root directory or

subdirectories. Small tools usually put their help documentation in the same plug-in as the code.

Large tools often have separate help plug-ins. The Platform uses its own internal documentation

server to provide the actual web pages from within the document web. This custom server allows

the Platform to resolve special inter-plug-in links and extract HTML pages from ZIP archives.

When organizing a help system, a full topic tree is only possible when the set of tools to be

documented is closed. With the Eclipse Platform, the set of tools is open-ended, and,

consequently, the structure of the help documentation needs to be modular. The Platform Help

DRAFT

Eclipse Platform Technical Overview 15

mechanism allows tools to contribute both raw content and sets of topics, and to indicate where

to insert its topics into a pre-existing topic tree at predefined insertion points.

Epilogue

In summary, the Eclipse Platform provides a nucleus of generic building blocks and APIs like

the workspace and the workbench, and various extension points through which new functionality

can be integrated. Through these extension points, tools written as separate plug-ins can extend

the Eclipse Platform. The user is presented with an IDE specialized by the set of available tool

plug-ins. However, rather than being the end of the story, it is really just the beginning. Tools

may also define new extension points and APIs of their own and thereby serve as building blocks

and integration points for yet other tools.

This brief overview has omitted a number of other interesting aspects of the Eclipse Platform

such as debugger support and integration with the ANT build tool. Further details about the

Eclipse Platform API, extension points, and standard components can be found in the Platform

Plug-in Developer Guide, which is available as online help for the Eclipse SDK.

DRAFT

Eclipse Platform Technical Overview 16

Part II: Case Study of Using the Eclipse Platform - Java Development Tooling

The proof of the pudding is in the eating.
---folk saying

As mentioned in Part I, the Eclipse Platform by itself is a foundation for building tools and

applications. The tools plugged in to the Platform supply the specific capabilities that make it

suitable for developing certain kinds of applications. This part is a case study of a real tool, the

Java development tooling (JDT), which adds Java program development capability to the

Platform. The JDT is included in the Eclipse SDK.

JDT Features

Before going behind the scenes to see how the JDT is put together, it helps to have a sense of

what the JDT does and what it looks like to the user. Figure 4 shows what the workbench

normally looks like when the user is writing a Java program.

Figure 4 - Workbench showing Java perspective.

DRAFT

Eclipse Platform Technical Overview 17

The JDT adds the capabilities of a full-featured Java IDE to the Eclipse Platform (some of which

are visible in Figure 4). The following is a brief summary of those features:

• Java projects

• Java source (*.java) files arranged in traditional Java package directories below one or
more source folders.

• JAR libraries in the same project, another project, or external to the workspace.

• Generated binary class (*.class) files arranged in package directories in a separate output
folder.

• Unrestricted other files, such as program resources and design documentation.

• Browsing Java projects

• In terms of Java-specific elements: packages, types, methods, and fields.

• Arranged by package, or by supertype or subtype hierarchy.

• Editing

• Java source code editor.

• Keyword and syntax coloring (including inside Javadoc comments).

• Separate outline shows declaration structure (automatic live updates while editing).

• Compiler problems shown as annotations in the margin.

• Declaration line ranges shown as annotations in the margin.

• Code formatter.

• Code resolve opens selected Java element in an editor.

• Code completion proposes legal completions of method, etc. names.

• API help shows Javadoc specification for selected Java element in pop-up window.

• Import assistance automatically creates and organizes import declarations.

• Refactoring

• For improving code structure without changing behavior.

• Method extraction.

• Safe rename for methods, etc. also updates references.

• Preview (and veto) individual changes stemming from a refactoring operation.

• Search

• Find declarations of and/or references to packages, types, methods, and fields.

• Search results presented in search results view.

• Search results reported against Java elements.

• Matches are highlighted as annotations in the editor.

• Compare

• Structured compare of Java compilation units showing the changes to individual Java
methods, etc.

• Replace individual Java elements with version of element in the local history.

• Compile

• JCK-compliant Java compiler.

• Compiler generates standard binary *.class files.

• Incremental compilation.

• Compiles triggered manually upon demand or automatically after each change to a

DRAFT

Eclipse Platform Technical Overview 18

source file (i.e., workspace auto-build).

• Compiler problems presented in standard tasks view.

• Run

• Run Java program in separate target Java virtual machine.

• Supports multiple types of Java virtual machine (user selectable).

• Console provides stdout, stdin, stderr.

• Scrapbook pages for interactive Java code snippet evaluation.

• Debug

• Debug Java program with JPDA-compliant Java virtual machine.

• View threads and stack frames.

• Set breakpoints and step through method source code.

• Inspect and modify fields and local variables.

• Expression evaluation in the context of a stack frame.

• Dynamic class reloading where supported by Java virtual machine.

DRAFT

Eclipse Platform Technical Overview 19

JDT Implementation

The JDT is implemented by a group of plug-ins, with the user interface in a UI plug-in and the

non-UI infrastructure in a separate core plug-in. This separation of UI and non-UI code allows

the JDT core infrastructure to be used in GUI-less configurations of the Eclipse Platform, and by

other GUI tools that incorporate Java capabilities but do not need the JDT UI.

Figure 5 illustrates key connections between the JDT and the Platform.

Figure 5 - Key connections between JDT and Eclipse Platform.

DRAFT

Eclipse Platform Technical Overview 20

Java Projects

At the workspace level, the JDT defines a special Java project nature that is used to tag a project

as a Java project.

Each Java project has a single special classpath file (named “.classpath”) that records Java-

specific information about the project. This information includes the locations of the project's

source folder(s), pre-compiled JAR libraries, and the output folder for compiler-generated binary

class files.

Java Compiler

The Java nature configures each Java project with a Java incremental project builder that

invokes a built-in Java compiler.5

In the case of an initial or full build, the Java compiler translates all Java source files found in the

project's source folder(s) into corresponding binary class files in the project's output folder. The

JDT declares a new marker subtype for Java problems. As the compiler detects errors, it

annotates the offending source files with Java problem markers. A project specifies which JAR

libraries it depends on. This allows the JDT to target various Java runtime configurations, such

as CLDC, J2SE, and J2EE.

As the compiler encounters each source file, it adds information to an in-memory dependency

graph. This allows subsequent builds of the project to be handled more efficiently. The

workspace incremental project builder framework maintains a resource delta tree with changes

since the last time a given builder was invoked. The next time the Java incremental project

builder is called, it uses this resource delta tree to determine the limited set of source files that

need to be recompiled because they were changed, removed, or added. The compiler uses its

dependency graph to further widen the recompilation set to include any other source files that

might compile differently as a consequence. The compiler then deletes obsolete class files and

Java problem markers, and compiles only the computed subset of source files. The JDT

participates in workspace saves so that the dependency graph can be preserved on disk between

sessions, otherwise the next session would require a full build just to rediscover the dependency

graph. This incremental strategy allows the JDT to run builds very frequently, such as after every

source file save operation, even for projects containing hundreds or thousands of source files.

Java Model

The Java model provides API for navigating the Java element tree. The Java element tree represents

projects in terms of Java-centric element types:

• Package fragment roots corresponding to a project's source folders and JAR libraries.

• Package fragments corresponding to specific packages within a package fragment root.

• Compilation units and binary classes corresponding to individual Java source (*.java) and
binary class (*.class) files.

5In the 3.1 release (June 2005) of the Eclipse SDK, the Java compiler is both JCK 1.3 ,1.4, and 1.5 compliant.

DRAFT

Eclipse Platform Technical Overview 21

• Various types of Java declarations that appear within a compilation unit or class file:

• Package declarations.

• Import declarations.

• Class and interface declarations.

• Method and constructor declarations.

• Field declarations.

• Initializer declarations.

For most Java-specific tools (including the Java UI) navigating and operating on a Java project

via the Java model is more convenient than navigating the underlying resources. Java elements

are represented by adaptable objects so that other parties can extend their behavior.

A Java project's classpath file and underlying resources define the Java element tree. It is

infeasible to keep the Java element tree in memory as it is an order of magnitude larger than the

workspace resource tree and would require reading and parsing all Java source files to construct.

Instead, the Java element tree is built piecemeal and only on demand. The Java compiler parses

individual compilation units to extract declaration structure. The Java element tree maintains an

internal, limited size cache of recently analyzed compilation units. The Java element tree

registers a resource change listener with the workspace so that it can remove obsolete cache

entries when source files get deleted or changed. The Java element tree issues its own deltas,

which are analogous to workspace resource tree deltas.

A cache-based Java element tree works well for simple navigation but cannot support broad

searches or other patterns of traversal that visit declarations across a large number of different

compilation units. The Java model addresses this by maintaining internal indexes on disk. The

indexes are composed of summary entries that associate a declared or referenced name with the

path of the corresponding file. Given a name, these indexes can be efficiently searched to

identify files that contain at least one occurrence. The individual files can be read and parsed if

further precision is required or if line numbers are needed. The Java model uses a resource

change listener to keep track of files currently in need of indexing. The actual work of indexing

individual files happens in a low priority background thread.

Java UI

The JDT UI defines a Java perspective for users developing Java code. This perspective contains the

following Java-specific workbench contributions (amongst others):

• Packages view.

• Type hierarchy view.

• Actions for creating Java elements.

• Java editor and Java outline.

The packages view, which shows compilation units within a Java project, or class files within a

JAR library, cuts along structural lines (like the standard workbench resource navigator view).

The elements and relationships shown in the tree viewer come directly from the Java model.

In contrast, the type hierarchy view cuts across structural lines to show classes and interfaces

arranged by the supertype-subtype relationship defined by the Java language. The type hierarchy

DRAFT

Eclipse Platform Technical Overview 22

is built using a sequence of index-based Java model searches combined with parsing the relevant

compilation units to extract direct supertype names. The elements presented in the viewer come

directly from the Java model.

The actions bring up wizards for creating a new Java project, package, class, or interface. These

actions operate on the Java model.

The Java editor is registered as the editor of choice for files of type *.java. This editor

collaborates with the standard workbench content outline view by providing a tree of Java

elements for the current declaration structure. The Java editor makes extensive use of the JFace

text viewer toolkit to implement the following features:

• Partitioning - The document is partitioned into regions of Java code and Javadoc comments
using a rules-based scanner.

• Keyword and syntax coloring - Coloring rules are applied to visually distinguish tokens
within each region type. The coloring is maintained with a presentation reconciler.

• Marginal annotations - The margin of the text viewer shows declaration line ranges, problem
markers, and debugger breakpoints. These annotations are adjusted automatically as the text
is edited.

• Formatting - Controls automatic indenting and redistributes whitespace within and between
lines.

• Code assist - Proposes region-specific Java (or Javadoc) completions at a given document
position. This relies on special support from the Java compiler.

• Content outline - Updates as editing takes place. This is done periodically as a background
activity using a reconciler. Selections and manipulations in the content outline are
immediately reflected in the editor buffer.

• Method level edit - The editor can also present a single method (or other kind of declaration)
rather than the entire source file.

Refactoring operations such as “safe rename” rely on index-based Java model searches and

special compiler support to locate and rewrite parts of the program affected by the change.

Java Run and Debug

The workbench includes menu and tool bar actions for running and debugging arbitrary

programs, and provides a generic debug perspective better suited to that task. This perspective

includes a processes view that shows all currently running and recently terminated processes, and

a console view that allows developers to interact with the selected running process via its

standard input and output streams.

JDT supplies the means for running and debugging Java programs. A target Java virtual machine

is launched as a separate process to run the Java program. The JDT supports launchers for

different types of Java virtual machines. Other tools can contribute specialized launchers via a

JDT-defined extension point.

Scrapbook pages are represented as text files (type *.jpage) that get edited by a special text editor

that knows how to run Java code snippets. This involves turning the selected statement,

expression, or declaration into a main class, compiling it, downloading it to a running Java VM,

DRAFT

Eclipse Platform Technical Overview 23

running it, and extracting the print string of the result and displaying it in the snippet editor. This

feature relies on special support from the Java compiler, but does not require special support

from the target Java VM.

When a Java program is launched in debug mode, a debug view shows the processes, threads,

and stack frames. When the debugger needs to show source code to the user, it opens an editor

using the workbench provided mechanisms. During single stepping, the debugger instructs the

editor which source code line to highlight. Other debug-specific views show the list of

breakpoints, the values of variables, and the fields of objects. Breakpoints are represented by a

special type of marker.

The Java debugger works with any JDPA-compliant target Java VM. Evaluating a Java

expression in the debugger in the context of a running method is carried out by a Java expression

interpreter that walks the abstract syntax tree for the expression and performs standard JDI calls.

The JDI operations call across to the target Java VM to access fields and invoke methods. Where

the Java VM supports dynamic class reloading, fixes made to the running program are installed

immediately so that the debug session can continue with the fixes in place. The debugger

registers a resource change listener so that it can discover which binary class files in the project's

output folder need to be reloaded into the target VM.

Epilogue

This has been only the briefest glimpse of how the JDT supplies the specific capabilities that

make the Eclipse Platform suitable for developing Java programs. The Java UI plug-in makes

extensive use of workbench extension points to contribute special editors, views, perspectives,

and actions that allow the user to work with Java programs in Java-specific terms. The Java

compiler and Java model can be invoked programmatically from other tools through the Java

model API defined by the JDT core plug-in. Both the JDT core and UI plug-ins also declare

extension points so that other tools can extend them in pre-defined ways.

JDT is included in the Eclipse SDK; further details can be found in the Java Development User

Guide and JDT Plug-in Developer Guide, which is available as online help for the Eclipse SDK.

Copyright © IBM Corporation and The Eclipse Foundation 2001, 2003, 2005 All rights reserved.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.

in the United States and other countries.

Windows and ActiveX are either registered trademarks or trademarks of Microsoft Corporation

in the United States and/or other countries.

Motif is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds.

Other company, product, and service names may be trademarks or service marks of others.

