Skip to main content
aboutsummaryrefslogtreecommitdiffstats
path: root/ccm.c
blob: c9362e5e5cd3e0b994528c78109a0e4d4a82745a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/*******************************************************************************
 *
 * Copyright (c) 2011, 2012, 2013, 2014, 2015 Olaf Bergmann (TZI) and others.
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * and Eclipse Distribution License v. 1.0 which accompanies this distribution.
 *
 * The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html
 * and the Eclipse Distribution License is available at 
 * http://www.eclipse.org/org/documents/edl-v10.php.
 *
 * Contributors:
 *    Olaf Bergmann  - initial API and implementation
 *    Hauke Mehrtens - memory optimization, ECC integration
 *
 *******************************************************************************/

#include <string.h>

#include "tinydtls.h"
#include "global.h"
#include "numeric.h"
#include "ccm.h"

#ifdef HAVE_ASSERT_H
# include <assert.h>
#endif

#define CCM_FLAGS(A,M,L) (((A > 0) << 6) | (((M - 2)/2) << 3) | (L - 1))

#define MASK_L(_L) ((1 << 8 * _L) - 1)

#define SET_COUNTER(A,L,cnt,C) {					\
    unsigned int i_;                                                    \
    memset((A) + DTLS_CCM_BLOCKSIZE - (L), 0, (L));			\
    (C) = (cnt) & MASK_L(L);						\
    for (i_ = DTLS_CCM_BLOCKSIZE - 1; (C) && (i_ > (L)); --i_, (C) >>= 8) \
      (A)[i_] |= (C) & 0xFF;						\
  }

static inline void 
block0(size_t M,       /* number of auth bytes */
       size_t L,       /* number of bytes to encode message length */
       size_t la,      /* l(a) octets additional authenticated data */
       size_t lm,      /* l(m) message length */
       unsigned char nonce[DTLS_CCM_BLOCKSIZE],
       unsigned char *result) {
  unsigned int i;

  result[0] = CCM_FLAGS(la, M, L);

  /* copy the nonce */
  memcpy(result + 1, nonce, DTLS_CCM_BLOCKSIZE - L - 1);
  
  for (i=0; i < L; i++) {
    result[15-i] = lm & 0xff;
    lm >>= 8;
  }
}

/** 
 * Creates the CBC-MAC for the additional authentication data that
 * is sent in cleartext. 
 *
 * \param ctx  The crypto context for the AES encryption.
 * \param msg  The message starting with the additional authentication data.
 * \param la   The number of additional authentication bytes in \p msg.
 * \param B    The input buffer for crypto operations. When this function
 *             is called, \p B must be initialized with \c B0 (the first
 *             authentication block.
 * \param X    The output buffer where the result of the CBC calculation
 *             is placed.
 * \return     The result is written to \p X.
 */
static void
add_auth_data(rijndael_ctx *ctx, const unsigned char *msg, size_t la,
	      unsigned char B[DTLS_CCM_BLOCKSIZE], 
	      unsigned char X[DTLS_CCM_BLOCKSIZE]) {
  size_t i,j; 

  rijndael_encrypt(ctx, B, X);

  memset(B, 0, DTLS_CCM_BLOCKSIZE);

  if (!la)
    return;

#ifndef WITH_CONTIKI
    if (la < 0xFF00) {		/* 2^16 - 2^8 */
      j = 2;
      dtls_int_to_uint16(B, la);
  } else if (la <= UINT32_MAX) {
      j = 6;
      dtls_int_to_uint16(B, 0xFFFE);
      dtls_int_to_uint32(B+2, la);
    } else {
      j = 10;
      dtls_int_to_uint16(B, 0xFFFF);
      dtls_int_to_uint64(B+2, la);
    }
#else /* WITH_CONTIKI */
  /* With Contiki, we are building for small devices and thus
   * anticipate that the number of additional authentication bytes
   * will not exceed 65280 bytes (0xFF00) and we can skip the
   * workarounds required for j=6 and j=10 on devices with a word size
   * of 32 bits or 64 bits, respectively.
   */

  assert(la < 0xFF00);
  j = 2;
  dtls_int_to_uint16(B, la);
#endif /* WITH_CONTIKI */

    i = min(DTLS_CCM_BLOCKSIZE - j, la);
    memcpy(B + j, msg, i);
    la -= i;
    msg += i;
    
    memxor(B, X, DTLS_CCM_BLOCKSIZE);
  
  rijndael_encrypt(ctx, B, X);
  
  while (la > DTLS_CCM_BLOCKSIZE) {
    for (i = 0; i < DTLS_CCM_BLOCKSIZE; ++i)
      B[i] = X[i] ^ *msg++;
    la -= DTLS_CCM_BLOCKSIZE;

    rijndael_encrypt(ctx, B, X);
  }
  
  if (la) {
    memset(B, 0, DTLS_CCM_BLOCKSIZE);
    memcpy(B, msg, la);
    memxor(B, X, DTLS_CCM_BLOCKSIZE);

    rijndael_encrypt(ctx, B, X);  
  } 
}

static inline void
encrypt(rijndael_ctx *ctx, size_t L, unsigned long counter,
	unsigned char *msg, size_t len,
	unsigned char A[DTLS_CCM_BLOCKSIZE],
	unsigned char S[DTLS_CCM_BLOCKSIZE]) {

  static unsigned long counter_tmp;

  SET_COUNTER(A, L, counter, counter_tmp);    
  rijndael_encrypt(ctx, A, S);
  memxor(msg, S, len);
}

static inline void
mac(rijndael_ctx *ctx, 
    unsigned char *msg, size_t len,
    unsigned char B[DTLS_CCM_BLOCKSIZE],
    unsigned char X[DTLS_CCM_BLOCKSIZE]) {
  size_t i;

  for (i = 0; i < len; ++i)
    B[i] = X[i] ^ msg[i];

  rijndael_encrypt(ctx, B, X);

}

long int
dtls_ccm_encrypt_message(rijndael_ctx *ctx, size_t M, size_t L, 
			 unsigned char nonce[DTLS_CCM_BLOCKSIZE], 
			 unsigned char *msg, size_t lm, 
			 const unsigned char *aad, size_t la) {
  size_t i, len;
  unsigned long counter_tmp;
  unsigned long counter = 1; /* \bug does not work correctly on ia32 when
			             lm >= 2^16 */
  unsigned char A[DTLS_CCM_BLOCKSIZE]; /* A_i blocks for encryption input */
  unsigned char B[DTLS_CCM_BLOCKSIZE]; /* B_i blocks for CBC-MAC input */
  unsigned char S[DTLS_CCM_BLOCKSIZE]; /* S_i = encrypted A_i blocks */
  unsigned char X[DTLS_CCM_BLOCKSIZE]; /* X_i = encrypted B_i blocks */

  len = lm;			/* save original length */
  /* create the initial authentication block B0 */
  block0(M, L, la, lm, nonce, B);
  add_auth_data(ctx, aad, la, B, X);

  /* initialize block template */
  A[0] = L-1;

  /* copy the nonce */
  memcpy(A + 1, nonce, DTLS_CCM_BLOCKSIZE - L - 1);
  
  while (lm >= DTLS_CCM_BLOCKSIZE) {
    /* calculate MAC */
    mac(ctx, msg, DTLS_CCM_BLOCKSIZE, B, X);

    /* encrypt */
    encrypt(ctx, L, counter, msg, DTLS_CCM_BLOCKSIZE, A, S);

    /* update local pointers */
    lm -= DTLS_CCM_BLOCKSIZE;
    msg += DTLS_CCM_BLOCKSIZE;
    counter++;
  }

  if (lm) {
    /* Calculate MAC. The remainder of B must be padded with zeroes, so
     * B is constructed to contain X ^ msg for the first lm bytes (done in
     * mac() and X ^ 0 for the remaining DTLS_CCM_BLOCKSIZE - lm bytes
     * (i.e., we can use memcpy() here).
     */
    memcpy(B + lm, X + lm, DTLS_CCM_BLOCKSIZE - lm);
    mac(ctx, msg, lm, B, X);

    /* encrypt */
    encrypt(ctx, L, counter, msg, lm, A, S);

    /* update local pointers */
    msg += lm;
  }
  
  /* calculate S_0 */  
  SET_COUNTER(A, L, 0, counter_tmp);
  rijndael_encrypt(ctx, A, S);

  for (i = 0; i < M; ++i)
    *msg++ = X[i] ^ S[i];

  return len + M;
}

long int
dtls_ccm_decrypt_message(rijndael_ctx *ctx, size_t M, size_t L,
			 unsigned char nonce[DTLS_CCM_BLOCKSIZE], 
			 unsigned char *msg, size_t lm, 
			 const unsigned char *aad, size_t la) {
  
  size_t len;
  unsigned long counter_tmp;
  unsigned long counter = 1; /* \bug does not work correctly on ia32 when
			             lm >= 2^16 */
  unsigned char A[DTLS_CCM_BLOCKSIZE]; /* A_i blocks for encryption input */
  unsigned char B[DTLS_CCM_BLOCKSIZE]; /* B_i blocks for CBC-MAC input */
  unsigned char S[DTLS_CCM_BLOCKSIZE]; /* S_i = encrypted A_i blocks */
  unsigned char X[DTLS_CCM_BLOCKSIZE]; /* X_i = encrypted B_i blocks */

  if (lm < M)
    goto error;

  len = lm;	      /* save original length */
  lm -= M;	      /* detract MAC size*/

  /* create the initial authentication block B0 */
  block0(M, L, la, lm, nonce, B);
  add_auth_data(ctx, aad, la, B, X);

  /* initialize block template */
  A[0] = L-1;

  /* copy the nonce */
  memcpy(A + 1, nonce, DTLS_CCM_BLOCKSIZE - L - 1);
  
  while (lm >= DTLS_CCM_BLOCKSIZE) {
    /* decrypt */
    encrypt(ctx, L, counter, msg, DTLS_CCM_BLOCKSIZE, A, S);
    
    /* calculate MAC */
    mac(ctx, msg, DTLS_CCM_BLOCKSIZE, B, X);

    /* update local pointers */
    lm -= DTLS_CCM_BLOCKSIZE;
    msg += DTLS_CCM_BLOCKSIZE;
    counter++;
  }

  if (lm) {
    /* decrypt */
    encrypt(ctx, L, counter, msg, lm, A, S);

    /* Calculate MAC. Note that msg ends in the MAC so we must
     * construct B to contain X ^ msg for the first lm bytes (done in
     * mac() and X ^ 0 for the remaining DTLS_CCM_BLOCKSIZE - lm bytes
     * (i.e., we can use memcpy() here).
     */
    memcpy(B + lm, X + lm, DTLS_CCM_BLOCKSIZE - lm);
    mac(ctx, msg, lm, B, X); 

    /* update local pointers */
    msg += lm;
  }
  
  /* calculate S_0 */  
  SET_COUNTER(A, L, 0, counter_tmp);
  rijndael_encrypt(ctx, A, S);

  memxor(msg, S, M);

  /* return length if MAC is valid, otherwise continue with error handling */
  if (equals(X, msg, M))
    return len - M;
  
 error:
  return -1;
}

Back to the top