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Agenda.
• This tutorial contains the following sections :

– Create a Papyrus project with an Activity Diagram.
– Create a Papyrus model with an Activity Diagram.
– Create an Activity Diagram in an existing Papyrus model.
– Activity's properties.
– Create an activity node.
– Edit an activity node's name.
– Create an Activity Edge.
– Activity edges.
– Control nodes.
– Object nodes.
– Actions.
– Activity groups.
– Exception Handlers.
– Comments.
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Create a Papyrus project 
with an Activity Diagram 

(1/3).
• Select the Papyrus perspective.
• Create a Papyrus project by :

– Using the creation wizard :
• Right click in Project 

Explorer view,
• Select « New » > « Other ... »,
• Choose « Papyrus Project »,

– Or using the file menu action,
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Create a Papyrus project 
with an Activity Diagram 

(2/3).
• Fill the project name,

• Select UML language,
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Create a Papyrus project 
with an Activity Diagram 

(3/3).
• Select the UML Activity Diagram.

• A new project is initialized with 
a model and an Activity diagram.
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Create a Papyrus model with 
an Activity Diagram.

• You may also create a new Papyrus model in an existing project :
– Using the creation wizard :

• Right click in Project Explorer view,
• Select « New » > « Other... »,
• Choose « Papyrus Model »,

– Or using the file menu action.

• Then, fill the model name,
• Then follow the same steps as in the project creation.
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Create an Activity Diagram in 
an existing Papyrus model.

• You may also add an Activity Diagram to an existing model :

– In the Model Explorer view, select the place where to add your diagram

– Select the Activity Diagram menu or click on the corresponding toolbar 
action.
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Activity's properties (1/4).
• An activity displays several properties in its heading part.

Here is an example with all these properties displayed :
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Activity's properties (2/4).
• The « singleExecution » label appears when the corresponding properties 

is activated in the Properties view.
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Activity's properties (3/4).
• You can add a parameter by clicking on the corresponding tooltip action, 

after leaving the mouse on the header :
 

– An activity parameter node is also automatically added.
– Select the parameter and use the Properties view to edit its properties, 

especially « Name », « Direction » and « Type ».
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Activity's properties (4/4).
• You can add a precondition by clicking on the corresponding tooltip action, 

after leaving the mouse on the header :

• You can add a postcondition by clicking on the corresponding tooltip 
action, after leaving the mouse on the header :

– Select the added constraint label to edit its name.
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Create an activity node.
• You may create nodes in the activity :

– Select the appropriated node in the Palette,
– Click in the activity where you want to draw it.



Papyrus | © 2011 by Zeligsoft, Atos, CEA LIST, and LIFL; made available under the EPL v1.0

Edit an activity node's name.
• You may edit the name of an activity node :

– In the Properties view when the node is selected,

– Directly by editing the label if it displays one.
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Create an Activity Edge.
• You may create an activity edge between two activity nodes :

– Select the appropriated edge in the Palette,
– Click in the activity, from the source node to the target node, without 

releasing the mouse button.

• Then, you may edit the edge's name in the properties view
(see previous slide for activity nodes).
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Activity edges.
• There are two kinds of activity edges :

– Control flow :

• This kind of edge passes control tokens which allow an activity 
node to start after another one. They can not carry objects nor 
data.

– Object flow :

• This kind of edge passes object and data tokens.
• When it links two object nodes, these must have compatible types, 

in order that the tokens can pass from one to another through the 
object flow.

• Most activity nodes have restrictions on the kind of their incoming and 
outgoing edges. If you can not draw an edge between two nodes, check 
whether there are specific restrictions.
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Control nodes (1/4).
• Control nodes allow to structure the activity. These are :

– Initial node : allows to start the activity.

• No edge can be drawn to an initial node, and only control flows can 
be drawn from an initial node.

– Activity final node : allows to end immediately the activity.

• No edge can be drawn from an activity final node.

– Flow final node : allows to destroy all incoming token
(the activity is not ended if other tokens still exist in other flows)

• No edge can be drawn from a flow final node.



Papyrus | © 2011 by Zeligsoft, Atos, CEA LIST, and LIFL; made available under the EPL v1.0

Control nodes (2/4).
– Decision node : allow to choose one among several outgoing edges.

• Generally, incoming and outgoing edges must be of the same kind 
(object XOR control flows) and there must be only one incoming 
edge.

• There may be an input object flow, 
used as an input for the decision, instead of or in addition to the 
usual incoming edge. This one has a specific label. To set this 
decision input flow, use the Advanced tab of the Properties view :

•

• You may also set a decision input behavior the same way.
– (see UML specification for more details on the semantic)
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Control nodes (3/4).
– Merge node : allow to transfer tokens coming from several edges.

• Incoming and outgoing edges must be of the same kind (object 
XOR control flows).

• There must be only one outgoing activity edge.

– Join node : allow to wait for all incoming token before processing.

• There must be only one outgoing activity edge.
• The outgoing edge is an object flow when there is at least one 

incoming object flow (to accept incoming data token carried by 
object flows).
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Control nodes (4/4).
– Fork node : allow to duplicate a token on all outgoing edges.

• incoming and outgoing edges must be of the same kind (object 
XOR control flows).

• There must be only one incoming activity edge.

• On join and fork nodes, you can use a button in the Appearance tab of the 
Properties view to switch the segment's orientation :
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Object nodes (1/4).
• Object nodes indicate an instance of a particuliar classifier may be available at a 

particular point in the activity.
• Since object nodes handle data or object token, you can generally only draw object 

flows from or to it.
• In the Properties view, you can edit the object node's properties.

– « Type » specifies the classifier.
– « Is Control Type » specifies that tokens will be handled like control tokens. 

Hence, that you can draw control flows.
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Object nodes (2/4).
• In the Advanced tab of the Properties view, you can edit the « In State » 

property.
– The assigned states must have been previously created in a state 

machine.
– This indicates the required states for the object 

handled by the object node.
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Object nodes (3/4).
• These object nodes are available in the activity diagram :

– Activity parameter node : provides inputs and outputs to the activity.
• Activity parameter nodes are mapped on the activity's parameters. 

When creating a new one, you will be asked to either create a new 
parameter or attach it to an existing one.
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Object nodes (4/4).
– Data store node : stores incoming values before sending a copy of 

them on outgoing edges.

– Pin (output pin, input pin, action input pin, value pin) : provides inputs 
and outputs to an action. These may be constrained by the owning 
action.

– Expansion node : provides inputs and outputs to an expansion region.



Papyrus | © 2011 by Zeligsoft, Atos, CEA LIST, and LIFL; made available under the EPL v1.0

Actions (1/7).
• Actions are activity nodes representing an individual step within an activity.

• Local pre and post conditions can be created on an action :
– Select the appropriate local condition tool in the palette,
– Click on the action,

– You can then edit the condition's name and expression.
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Actions (2/7).
• You may create the following actions :

– Opaque action : specifies an action with implementation-specific 
semantics.

• Use the Properties view to set the « Body » and « Language » 
properties.

• You may also use an opaque action if you do not want to specify 
the action's implementation.
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Actions (3/7).
– Read self action : retrieves the host object.

• This action always has a result output pin to return the hosting 
object.
 

– Value specification action : returns the result of evaluating a value 
specification.

• This action always has a result output pin to return the evaluation 
result.

• Use the Properties view to edit the value specification.



Papyrus | © 2011 by Zeligsoft, Atos, CEA LIST, and LIFL; made available under the EPL v1.0

Actions (4/7).
– Send object action : sends a request to a target object.

• This action always have 
target and request input pins.

– Send signal action : sends a signal to a target object.
• This action always has a target input pin.
• When creating the action, you will be asked to either create a new 

signal or assign an existing signal to send.
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Actions (5/7).
– Accept event Action : waits for a particular event.

• This action may not have any input pin.
• Create triggers from the Model Explorer view or use the Properties 

view to assign them.

• The number of output pins must depend on the assigned triggers.
– (see UML specification)

• If the triggers all have time events, 
the figure will change.
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Actions (6/7).
– Call operation action : transmits an operation call request to a target.

• This action always has a target input pins.
• When creating the action, you will be asked either to create the 

new invoked operation or to assign an existing one.

• The action's pins are synchronized with the operation's parameters.

Add 
operat ion 
parameters
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Actions (7/7).
– Call behavior action : invokes a behavior.

• When creating the action, you will be asked either to create a new 
invoked behavior or to assign an existing one.

• The action's pins are synchronized with the behavior's parameters.
• The rake symbol indicates that the called behavior is an activity.

Add 
behavior 
parameters
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Activity groups (1/3).
• Activity groups define sets of nodes and edges. Nodes and edges can 

belong to several groups. Yet, the graphical figure moves with the group 
which graphically contains it.

• When a node is placed in the 
intersection of several groups, 
you will be asked which group 
the figure shall graphically 
belong to.

• When a group is drawn over 
nodes already belonging to 
a group, you will be asked 
which nodes shall graphically 
belong to it.
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Activity groups (2/3).
• You may create the following activity groups :

– Activity partition : identifies nodes with a common characteristic.
• Activity partitions can share 

some content with any group.

– Interruptible activity region : terminates as soon as one a token leaves 
it through one of its interrupting edges.

• Interruptible activity regions 
can share some content with any group.

– Structured activity node : is an action with structured content.
• Structured activity nodes can 

not share some content with each other.
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Activity groups (3/3).
– Conditional node : a structured activity node representing an exlusive 

choice among several alternatives.

– Expansion region : a structured activity node that executes multiple 
times, once for each element of an input collection.

• The input collection is transmitted through an expansion node.

– Loop node : a structured activity node representing a loop with setep, 
test and body sections.

– Sequence node : a structured activity node that executes its actions in 
a specified order.
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Exception handlers.
• An exception handler is used to catch an exception.

– Draw it from the palette, from the protected node to an input pin,

– Then, in the Advanced tab of the Properties view, assign the « Handler 
Body » and the « Exception Type » properties.

– The handler body must have only the exception input as input pin.
– The handler body must have result output pins corresponding to the 

result output pins of the protected node.
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Comments.
• You can create comments with the appropriate tools in the palette.

– Select the « Comment » tool and click on the diagram to create a 
comment node.

– Select the « Link » too and attach it to the commented element.
– Fill the text in the comment node.
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