Skip to main content
summaryrefslogtreecommitdiffstats
blob: eca6e6e81f2882af5db2a1495e954040338d757c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
/*******************************************************************************
 * Copyright (c) 2016, 2017 Willink Transformations and others.
 * All rights reserved.   This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * http://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors:
 *   E.D.Willink - Initial API and implementation
 *******************************************************************************/
package org.eclipse.qvtd.compiler.internal.qvts2qvts.partitioner;

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.eclipse.jdt.annotation.NonNull;
import org.eclipse.jdt.annotation.Nullable;
import org.eclipse.ocl.pivot.CompleteClass;
import org.eclipse.ocl.pivot.Property;
import org.eclipse.ocl.pivot.utilities.ClassUtil;
import org.eclipse.ocl.pivot.utilities.Nameable;
import org.eclipse.qvtd.compiler.CompilerProblem;
import org.eclipse.qvtd.compiler.internal.qvtb2qvts.RegionHelper;
import org.eclipse.qvtd.compiler.internal.qvtb2qvts.ScheduleManager;
import org.eclipse.qvtd.compiler.internal.qvtm2qvts.QVTm2QVTs;
import org.eclipse.qvtd.compiler.internal.qvtr2qvtc.QVTrNameGenerator;
import org.eclipse.qvtd.compiler.internal.qvts2qvts.utilities.ReachabilityForest;
import org.eclipse.qvtd.compiler.internal.utilities.CompilerUtil;
import org.eclipse.qvtd.pivot.qvtschedule.DispatchRegion;
import org.eclipse.qvtd.pivot.qvtschedule.Edge;
import org.eclipse.qvtd.pivot.qvtschedule.MappingRegion;
import org.eclipse.qvtd.pivot.qvtschedule.MicroMappingRegion;
import org.eclipse.qvtd.pivot.qvtschedule.NavigableEdge;
import org.eclipse.qvtd.pivot.qvtschedule.NavigationEdge;
import org.eclipse.qvtd.pivot.qvtschedule.Node;
import org.eclipse.qvtd.pivot.qvtschedule.Role;
import org.eclipse.qvtd.pivot.qvtschedule.SuccessEdge;
import org.eclipse.qvtd.pivot.qvtschedule.VerdictRegion;
import org.eclipse.qvtd.pivot.qvtschedule.utilities.QVTscheduleUtil;

import com.google.common.collect.Iterables;
import com.google.common.collect.Lists;
import com.google.common.collect.Sets;

/**
 * The MappingPartitioner supervises the partitioning of a mapping region into a 'tree' of partitions that avoid
 * scheduling hazards. Each partition describes the future content of a micromapping. For non-degerate cases the 'tree'
 * comprises a sequence of Speculation, Speculating, Speculated partitions followed by zero or more concurrent Edge partitions.
 *
 * The Speculation partition establishes the basic pattern of inputs objects that justify creation of a speculated trace object.
 *
 * The Speculating partition interacts with other Speculations to establish that all predicates are satisfied.
 *
 * The Speculated partition creates the immediate corollaries of the successful speculation.
 *
 * The Edge partitions realize further edges once their targets are available.
 *
 * Each MappingPartitioner collaborates with an overall TransformationPartitioner for global analyses.
 */
public class MappingPartitioner implements Nameable
{
	protected final @NonNull ScheduleManager scheduleManager;

	/**
	 * The overall transformation partitioner providing global analysis results.
	 */
	protected final @NonNull TransformationPartitioner transformationPartitioner;

	/**
	 * The region to be partitioned.
	 */
	protected final @NonNull MappingRegion region;

	/**
	 * The TraceClassAnalysis instances that are consumed by this MappingPartitioner.
	 */
	private @Nullable List<@NonNull TraceClassAnalysis> consumedTraceClassAnalyses = null;

	/**
	 * The TraceClassAnalysis instances that are produced by this MappingPartitioner.
	 */
	private @Nullable List<@NonNull TraceClassAnalysis> producedTraceClassAnalyses = null;

	/**
	 * The TraceClassAnalysis instances and super instances that are produced by this MappingPartitioner.
	 */
	private @Nullable Set<@NonNull TraceClassAnalysis> superProducedTraceClassAnalyses = null;

	/**
	 * The constant nodes that require no computation from other nodes.
	 */
	private final @NonNull List<@NonNull Node> constantInputNodes = new ArrayList<>();

	/**
	 * The constant nodes that impose a check on a computation from other nodes.
	 */
	private final @NonNull List<@NonNull Node> constantOutputNodes = new ArrayList<>();

	/**
	 * The map from node to the trace edge by which the node may be located by lookup in a trace node once its trace edge is realized..
	 */
	private final @NonNull Map<@NonNull Node, @NonNull Edge> node2traceEdge = new HashMap<>();

	/**
	 * properties that are directly realized from a middle object provided all predicates are satisfied.
	 */
	private final @NonNull List<@NonNull Edge> predicatedEdges = new ArrayList<>();
	private final @NonNull List<@NonNull Node> predicatedMiddleNodes = new ArrayList<>();
	private final @NonNull List<@NonNull Node> predicatedOutputNodes = new ArrayList<>();
	private final @NonNull List<@NonNull Node> realizedMiddleNodes = new ArrayList<>();
	private final @NonNull List<@NonNull Node> realizedOutputNodes = new ArrayList<>();
	private final @NonNull Set<@NonNull NavigableEdge> oldPrimaryNavigableEdges = new HashSet<>();
	private final @NonNull Set<@NonNull Edge> realizedEdges = new HashSet<>();
	private final @NonNull List<@NonNull Edge> realizedOutputEdges = new ArrayList<>();
	private final @NonNull Set<@NonNull SuccessEdge> successEdges = new HashSet<>();	// FIXME redundant wrt traceNode2successEdge.values()
	//	private boolean hasLoadedNodes = false;

	/**
	 * The override dispatch node if needed.
	 */
	private @Nullable Node dispatchNode = null;

	/**
	 * The trace node(s).
	 */
	private final @NonNull List<@NonNull Node> traceNodes = new ArrayList<>();

	/**
	 * The trace nodes and their corresponding success node.
	 *
	 * There should normally be exactly one trace node.
	 *
	 * There is no trace node for Adolfo's prematurely folded middle optimization and for manual partitionings
	 * such as attributeColumns in testQVTcCompiler_SimpleUML2RDBMS_CG.
	 *
	 * There could be multiple trace nodes after an early merge results. Work in progress.
	 */
	private final @NonNull Map<@NonNull Node, @Nullable SuccessEdge> traceNode2successEdge = new HashMap<>();

	/**
	 * The realized edges from the (realized) trace node to a realized (corollary) ouput node that identify what is
	 * guaranteed to be created only speculation succeeds.
	 */
	private final @NonNull List<@NonNull NavigableEdge> corollaryEdges = new ArrayList<>();

	/**
	 * The realized output nodes guaranteed to be created only speculation succeeds;
	 * the targets of corollaryEdges.
	 */
	private final @NonNull List<@NonNull Node> corollaryNodes = new ArrayList<>();

	/**
	 * Dynamically growing list of constant edges that have been traversed by a partition.
	 */
	private final @NonNull Set<@NonNull Edge> alreadyConstantEdges = new HashSet<>();

	/**
	 * Dynamically growing list of loaded edges that have been traversed by a partition.
	 */
	private final @NonNull Set<@NonNull Edge> alreadyLoadedEdges = new HashSet<>();

	/**
	 * Dynamically growing list of edges that have been predicated by a partition.
	 */
	private final @NonNull Set<@NonNull Edge> alreadyPredicatedEdges = new HashSet<>();

	/**
	 * Dynamically growing list of nodes that have been predicated by a partition.
	 */
	private final @NonNull Set<@NonNull Node> alreadyPredicatedNodes = new HashSet<>();

	/**
	 * Dynamically growing map of edges that have been realized to the partition that realizes them.
	 */
	private final @NonNull Map<@NonNull Edge, @NonNull AbstractPartition> alreadyRealizedEdges = new HashMap<>();

	/**
	 * Dynamically growing list of nodes that have been realized by a partition.
	 */
	private final @NonNull Set<@NonNull Node> alreadyRealizedNodes = new HashSet<>();

	private final @NonNull Map<@NonNull Edge, @NonNull List<@NonNull AbstractPartition>> debugEdge2partitions = new HashMap<>();

	public MappingPartitioner(@NonNull TransformationPartitioner transformationPartitioner, @NonNull MappingRegion region) {
		this.scheduleManager = transformationPartitioner.getScheduleManager();
		this.transformationPartitioner = transformationPartitioner;
		this.region = region;
		analyzeNodes();
		for (@NonNull Node traceNode : analyzeTraceNodes()) {
			analyzeSuccessEdge(traceNode);
			analyzeTraceEdges(traceNode);
		}
		//
		List<@NonNull Node> alreadyRealized = new ArrayList<>(traceNodes);
		if (dispatchNode != null) {
			alreadyRealized.add(dispatchNode);
		}
		analyzeCorollaries(alreadyRealized);
		analyzeEdges();
	}

	private void addConstantNode(@NonNull Node node) {
		assert node.isConstant();
		for (@NonNull Edge edge : QVTscheduleUtil.getIncomingEdges(node)) {
			if (edge.isComputation() || (edge.isNavigation() && !edge.isRealized())) {
				constantOutputNodes.add(node);
				return;
			}
		}
		constantInputNodes.add(node);
	}

	private void addConsumptionOfMiddleNode(@NonNull Node node) {
		if (!predicatedMiddleNodes.contains(node)) {
			predicatedMiddleNodes.add(node);
			TraceClassAnalysis consumedTraceAnalysis = transformationPartitioner.addConsumer(node.getCompleteClass(), this);
			List<@NonNull TraceClassAnalysis> consumedTraceClassAnalyses2 = consumedTraceClassAnalyses;
			if (consumedTraceClassAnalyses2 == null) {
				consumedTraceClassAnalyses = consumedTraceClassAnalyses2 = new ArrayList<>();
			}
			consumedTraceClassAnalyses2.add(consumedTraceAnalysis);
		}
	}

	public void addEdge(@NonNull Edge edge, @NonNull Role newEdgeRole, @NonNull AbstractPartition partition) {
		if (newEdgeRole == Role.CONSTANT) {
			alreadyConstantEdges.add(edge);
		}
		else if (newEdgeRole == Role.LOADED) {
			alreadyLoadedEdges.add(edge);
		}
		else if (newEdgeRole == Role.PREDICATED) {
			alreadyPredicatedEdges.add(edge);
		}
		else if (newEdgeRole == Role.SPECULATED) {
			alreadyPredicatedEdges.add(edge);
		}
		else if (newEdgeRole == Role.REALIZED) {
			alreadyRealizedEdges.put(edge, partition);
		}
		List<@NonNull AbstractPartition> partitions = debugEdge2partitions.get(edge);
		if (partitions == null) {
			partitions = new ArrayList<>();
			debugEdge2partitions.put(edge, partitions);
		}
		assert !partitions.contains(partition);
		partitions.add(partition);
	}

	public boolean addPredicatedNode(@NonNull Node node) {
		return alreadyPredicatedNodes.add(node);
	}

	public void addProblem(@NonNull CompilerProblem problem) {
		transformationPartitioner.addProblem(problem);
	}

	private void addProductionOfMiddleNode(@NonNull Node node) {
		if (node.isRealized() && !realizedMiddleNodes.contains(node)) {
			realizedMiddleNodes.add(node);
		}
		TraceClassAnalysis consumedTraceAnalysis = transformationPartitioner.addProducer(node.getCompleteClass(), this);
		List<@NonNull TraceClassAnalysis> producedTraceClassAnalyses2 = producedTraceClassAnalyses;
		if (producedTraceClassAnalyses2 == null) {
			producedTraceClassAnalyses = producedTraceClassAnalyses2 = new ArrayList<>();
		}
		if (!producedTraceClassAnalyses2.contains(consumedTraceAnalysis)) {
			producedTraceClassAnalyses2.add(consumedTraceAnalysis);
		}
	}

	public boolean addRealizedNode(@NonNull Node node) {
		return alreadyRealizedNodes.add(node);
	}

	/**
	 * Identify what gets realized as a consequence of the mapping succeeding.
	 */
	private void analyzeCorollaries(@NonNull List<@NonNull Node> alreadyRealizedNodes) {
		for (int i = 0; i < alreadyRealizedNodes.size(); i++) {
			Node alreadyRealizedNode = alreadyRealizedNodes.get(i);
			for (@NonNull NavigableEdge edge : alreadyRealizedNode.getRealizedNavigationEdges()) {
				Node targetNode = QVTscheduleUtil.getTargetNode(edge);
				if (targetNode.isRealized() && !targetNode.isSuccess()) {
					assert !corollaryEdges.contains(edge);
					corollaryEdges.add(edge);
					if (!alreadyRealizedNodes.contains(targetNode)) {
						alreadyRealizedNodes.add(targetNode);
						assert !corollaryNodes.contains(targetNode);
						if (!corollaryNodes.contains(targetNode)) {		// Overrides have a base and derived edge to the same rootVariable node
							corollaryNodes.add(targetNode);
						}
					}
					transformationPartitioner.addCorollary(QVTscheduleUtil.getProperty(edge), region);
				}
			}
		}
	}

	private void analyzeEdges() {
		for (@NonNull Edge edge : QVTscheduleUtil.getOwnedEdges(region)) {
			if (!edge.isSecondary()) {
				if (edge.isPredicated()) {
					predicatedEdges.add(edge);
				}
				if (edge.isNavigation()) {
					if (edge.isRealized()) {
						realizedEdges.add(edge);
						Node sourceNode = edge.getEdgeSource();
						Node targetNode = edge.getEdgeTarget();
						/*if (traceNode2successEdge.containsKey(sourceNode)) {
							if (targetNode.isRealized() && !targetNode.isSuccess()) {
								addCorollary((NavigableEdge) edge);
							}
						}
						else*/ if ((sourceNode.isPredicated() || sourceNode.isRealized())) {
							if (!traceNode2successEdge.containsKey(targetNode) && (targetNode.isPredicated() || targetNode.isRealized())) {
								realizedOutputEdges.add(edge);
							}
						}
						if (targetNode.isLoaded() && scheduleManager.isMiddle(sourceNode)) {
							//							navigableEdges.add(navigationEdge);
						}
					}
					else if (edge.isMatched() && !edge.isCast()) {
						assert !edge.isExpression();
						assert !edge.isComputation();
						Node targetNode = edge.getEdgeTarget();
						if (!targetNode.isExplicitNull()) {
							//							navigableEdges.add(navigationEdge);
						}
					}
				}
				/*				else if (QVTscheduleUtil.isRealizedIncludes(edge)) {
					realizedEdges.add(edge);
					Node sourceNode = edge.getSource();
					if ((sourceNode != traceNode) && (sourceNode == Role.PREDICATED || sourceNode == Role.REALIZED)) {
						Node targetNode = edge.getTarget();
						if ((targetNode != traceNode) && (targetNode == Role.PREDICATED || targetNode == Role.REALIZED)) {
							realizedOutputEdges.add(edge);
						}
					}
					if (edge.getTarget().isLoaded() && edge.getSource().getClassDatumAnalysis().getDomainUsage().isMiddle()) {
						//							navigableEdges.add(navigationEdge);
					}
				} */
			}
		}
		for (@NonNull NavigableEdge edge : region.getNavigationEdges()) {
			if (!edge.isSecondary() && !edge.isRealized()) {
				oldPrimaryNavigableEdges.add(edge);
			}
			if (edge.isSuccess()) {
				successEdges.add((SuccessEdge) edge);
				Node sourceNode = edge.getEdgeSource();
				assert scheduleManager.isMiddle(sourceNode);
				if (edge.isPredicated()) {
					addConsumptionOfMiddleNode(sourceNode);
				}
				else {
					assert edge.isRealized();
					addProductionOfMiddleNode(sourceNode);
				}
			}
		}
	}

	private void analyzeNodes() {
		for (@NonNull Node node : QVTscheduleUtil.getOwnedNodes(region)) {
			if (node.isExplicitNull()) {
				addConstantNode(node);
			}
			else if (node.isPattern()) {
				if (node.isConstant()) {
				}
				else if (node.isLoaded()) {
					//					hasLoadedNodes  = true;
				}
				else if (scheduleManager.isMiddle(node)) {
					if (node.isDispatch()) {
						if (dispatchNode != null) {
							throw new IllegalStateException();		// Dual dispatcher
						}
						dispatchNode = node;
					}
					else if (node.isTrace()) {
						//						if (traceNode != null) {
						//							throw new IllegalStateException();		// Two traces
						//						}
						traceNodes.add(node);
					}
					if (node.isPredicated()) {
						addConsumptionOfMiddleNode(node);
					}
					else if (node.isSpeculated()) {
						if (!node.isHead()) {		// Don't create a self-consumption cycle
							addConsumptionOfMiddleNode(node);
						}
					}
					else if (node.isSpeculation()) {
						addProductionOfMiddleNode(node);
					}
					else if (node.isRealized()) {
						addProductionOfMiddleNode(node);
						//					for (@NonNull NavigationEdge edge : node.getNavigationEdges()) {
						//						Node targetNode = edge.getTarget();
						//						NodeRole targetNodeRole = targetNode.getNodeRole();
						//						if (!targetNodeRole == Role.PREDICATED && !targetNodeRole == Role.REALIZED) {
						//							tracedInputNodes.add(targetNode);
						//						}
						//					}
					}
					else if (!node.isExplicitNull()) {
						throw new IllegalStateException("middle node must be predicated or realized : " + node);
					}

				}
				else {
					if (!node.isOperation()) {
						if (node.isPredicated()) {
							predicatedOutputNodes.add(node);
						}
						else if (node.isRealized()) {
							realizedOutputNodes.add(node);
						}
					}
				}
			}
			else if (node.isOperation()) {
				if (node.isConstant()) {
					addConstantNode(node);
				}
				else if (node.isRealized()) {
					realizedOutputNodes.add(node);
				}
			}
		}
	}

	private void analyzeSuccessEdge(@NonNull Node traceNode) {
		SuccessEdge successEdge = null;
		Property successProperty = scheduleManager.basicGetSuccessProperty(traceNode);
		if (successProperty != null) {
			NavigationEdge statusNavigationEdge = QVTscheduleUtil.basicGetNavigationEdge(traceNode, successProperty);
			if (statusNavigationEdge != null) {
				successEdge = (SuccessEdge) statusNavigationEdge;
			}
			else {
				if (!(region instanceof DispatchRegion) && !(region instanceof VerdictRegion)) {
					RegionHelper<@NonNull MappingRegion> regionHelper = new RegionHelper<>(scheduleManager, region);
					successEdge = regionHelper.createRealizedSuccess(traceNode, successProperty, null);
					Node successNode = QVTscheduleUtil.getTargetNode(successEdge);
					successNode.setUtility(Node.Utility.STRONGLY_MATCHED);		// FIXME is this really neded
				}
			}
		}
		traceNode2successEdge.put(traceNode, successEdge);
	}

	private void analyzeTraceEdges(@NonNull Node traceNode) {
		for (@NonNull Edge edge : QVTscheduleUtil.getOutgoingEdges(traceNode)) {
			if ((edge.isNavigation() && edge.isRealized())) {
				Node tracedNode = QVTscheduleUtil.getTargetNode(edge);
				node2traceEdge.put(tracedNode, edge);
			}
		}
	}

	private @NonNull Iterable<@NonNull Node> analyzeTraceNodes() {
		/*		if (realizedMiddleNodes.size() == 0) {
			return Collections.emptyList();
		}
		if (realizedMiddleNodes.size() == 1) {
			return Collections.singletonList(realizedMiddleNodes.get(0));
		}
		Iterable<@NonNull Node> headNodes = RuleHeadAnalysis.computeRealizedHeadNodes(region, realizedMiddleNodes);
		if (Iterables.size(headNodes) == 0) {
			return Collections.emptyList();
		}
		else {
			return Collections.singletonList(headNodes.iterator().next());
		} */
		return Iterables.concat(predicatedMiddleNodes, realizedMiddleNodes);
	}

	public @Nullable Node basicGetDispatchNode() {
		return dispatchNode;
	}

	private void check() {
		for (@NonNull Node node : QVTscheduleUtil.getOwnedNodes(region)) {
			if (((node.isSpeculated() && !node.isHead()) || node.isRealized()) && !hasRealizedNode(node)) {
				transformationPartitioner.addProblem(CompilerUtil.createRegionError(region, "Should have realized " + node));
			}
		}
		Set<@NonNull Edge> allPrimaryEdges = new HashSet<>();
		for (@NonNull Edge edge : QVTscheduleUtil.getOwnedEdges(region)) {
			if (!edge.isSecondary()) {
				allPrimaryEdges.add(edge);
				if (edge.isRealized() && !hasRealizedEdge(edge)) {
					transformationPartitioner.addProblem(CompilerUtil.createRegionError(region, "Should have realized " + edge));
				}
			}
		}
		//
		Set<@NonNull Node> deadNodes = computeDeadNodes(QVTscheduleUtil.getOwnedNodes(region));
		Set<@NonNull Edge> deadEdges = computeDeadEdges(deadNodes);
		allPrimaryEdges.removeAll(deadEdges);
		Set<@NonNull Edge> partitionedEdges = new HashSet<>(debugEdge2partitions.keySet());
		if (!partitionedEdges.equals(allPrimaryEdges)) {
			Set<@NonNull Edge> extraEdgesSet = Sets.newHashSet(partitionedEdges);
			CompilerUtil.removeAll(extraEdgesSet, allPrimaryEdges);
			for (@NonNull Edge edge : extraEdgesSet) {
				transformationPartitioner.addProblem(CompilerUtil.createRegionWarning(region, "Extra " + edge));
			}
			Set<@NonNull Edge> missingEdgesSet = Sets.newHashSet(allPrimaryEdges);
			missingEdgesSet.removeAll(partitionedEdges);
			for (@NonNull Edge edge : missingEdgesSet) {
				if (transformationPartitioner.getCorollaryOf(edge) == null) {// && !isDead(edge)) {
					transformationPartitioner.addProblem(CompilerUtil.createRegionWarning(region, "Missing " + edge));
				}
			}
		}
	}

	private @NonNull Set<@NonNull Edge> computeDeadEdges(@NonNull Iterable<@NonNull Node> deadNodes) {
		Set<@NonNull Edge> deadEdges = new HashSet<>();
		for (@NonNull Node node : deadNodes) {
			Iterables.addAll(deadEdges, QVTscheduleUtil.getIncomingEdges(node));
			Iterables.addAll(deadEdges, QVTscheduleUtil.getOutgoingEdges(node));
		}
		return deadEdges;
	}

	private @NonNull Set<@NonNull Node> computeDeadNodes(@NonNull Iterable<@NonNull Node> nodes) {
		Set<@NonNull Node> deadNodes = new HashSet<>();
		Set<@NonNull Node> moreDeadNodes = null;
		for (@NonNull Node node : nodes) {
			if (!node.isHead() && isDead(node, null)) {
				if (moreDeadNodes == null) {
					moreDeadNodes = new HashSet<>();
				}
				moreDeadNodes.add(node);
			}
		}
		if (moreDeadNodes == null) {
			return deadNodes;
		}
		while (moreDeadNodes.size() > 0) {
			deadNodes.addAll(moreDeadNodes);
			List<@NonNull Node> moreDeadNodesList = new ArrayList<>(moreDeadNodes);
			moreDeadNodes = null;
			for (@NonNull Node deadNode : moreDeadNodesList) {
				for (@NonNull Edge edge : QVTscheduleUtil.getIncomingEdges(deadNode)) {
					Node sourceNode = edge.getEdgeSource();
					if (!sourceNode.isHead() && isDead(sourceNode, deadNodes)) {
						if (moreDeadNodes == null) {
							moreDeadNodes = new HashSet<>();
						}
						moreDeadNodes.add(sourceNode);
					}
				}
			}
			if (moreDeadNodes == null) {
				break;
			}
		}
		return deadNodes;
	}

	private @NonNull MicroMappingRegion createActivatorRegion(int partitionNumber) {
		ReachabilityForest reachabilityForest = new ReachabilityForest(getReachabilityRootNodes(), getAvailableNavigableEdges());
		ActivatorPartition speculatingPartition = new ActivatorPartition(this, reachabilityForest);
		MicroMappingRegion microMappingRegion = speculatingPartition.createMicroMappingRegion("«activator»", "_p" + partitionNumber);
		if (QVTm2QVTs.DEBUG_GRAPHS.isActive()) {
			scheduleManager.writeDebugGraphs(microMappingRegion, null);
		}
		speculatingPartition.check(microMappingRegion);
		return microMappingRegion;
	}

	private @NonNull MicroMappingRegion createAssignmentRegion(@NonNull ReachabilityForest reachabilityForest, @NonNull Edge outputEdge, int partitionNumber) {
		String namePrefix = "«edge" + partitionNumber + "»";
		String symbolSuffix = "_p" + partitionNumber;
		AssignmentPartition assignmentPartition = new AssignmentPartition(this, reachabilityForest, outputEdge);
		MicroMappingRegion microMappingRegion = assignmentPartition.createMicroMappingRegion(namePrefix, symbolSuffix);
		if (QVTm2QVTs.DEBUG_GRAPHS.isActive()) {
			scheduleManager.writeDebugGraphs(microMappingRegion, null);
		}
		assignmentPartition.check(microMappingRegion);
		return microMappingRegion;
	}

	private @NonNull MicroMappingRegion createNewSpeculatedRegion(int partitionNumber) {
		ReachabilityForest reachabilityForest = new ReachabilityForest(getReachabilityRootNodes(), getAvailableNavigableEdges());
		NewSpeculatedPartition speculatedPartition = new NewSpeculatedPartition(this, reachabilityForest);
		MicroMappingRegion microMappingRegion = speculatedPartition.createMicroMappingRegion("«speculated»", "_p" + partitionNumber);
		if (QVTm2QVTs.DEBUG_GRAPHS.isActive()) {
			scheduleManager.writeDebugGraphs(microMappingRegion, null);
		}
		speculatedPartition.check(microMappingRegion);
		return microMappingRegion;
	}

	private @NonNull MicroMappingRegion createNewSpeculatingRegion(int partitionNumber) {
		ReachabilityForest reachabilityForest = new ReachabilityForest(getReachabilityRootNodes(), getAvailableNavigableEdges());
		NewSpeculatingPartition speculatingPartition = new NewSpeculatingPartition(this, reachabilityForest);
		MicroMappingRegion microMappingRegion = speculatingPartition.createMicroMappingRegion("«speculating»", "_p" + partitionNumber);
		if (QVTm2QVTs.DEBUG_GRAPHS.isActive()) {
			scheduleManager.writeDebugGraphs(microMappingRegion, null);
		}
		speculatingPartition.check(microMappingRegion);
		return microMappingRegion;
	}

	private @NonNull MicroMappingRegion createNewSpeculationRegion(int partitionNumber) {
		ReachabilityForest reachabilityForest = new ReachabilityForest(getSpeculationReachabilityRootNodes(), getAvailableNavigableEdges());
		NewSpeculationPartition speculationPartition = new NewSpeculationPartition(this, reachabilityForest);
		MicroMappingRegion microMappingRegion = speculationPartition.createMicroMappingRegion("«speculation»", "_p" + partitionNumber);
		if (QVTm2QVTs.DEBUG_GRAPHS.isActive()) {
			scheduleManager.writeDebugGraphs(microMappingRegion, null);
		}
		speculationPartition.check(microMappingRegion);
		return microMappingRegion;
	}

	private @NonNull MicroMappingRegion createRealizedRegion(int partitionNumber) {
		ReachabilityForest reachabilityForest = new ReachabilityForest(getReachabilityRootNodes(), getAvailableNavigableEdges());
		RealizedPartition realizedPartition = new RealizedPartition(this, reachabilityForest);
		MicroMappingRegion microMappingRegion = realizedPartition.createMicroMappingRegion("«realized»", "_p" + partitionNumber);
		if (QVTm2QVTs.DEBUG_GRAPHS.isActive()) {
			scheduleManager.writeDebugGraphs(microMappingRegion, null);
		}
		realizedPartition.check(microMappingRegion);
		return microMappingRegion;
	}

	private @NonNull MicroMappingRegion createResidualRegion(int partitionNumber) {
		ReachabilityForest reachabilityForest = new ReachabilityForest(getReachabilityRootNodes(), getAvailableNavigableEdges());
		ResidualPartition realizedPartition = new ResidualPartition(this, reachabilityForest);
		MicroMappingRegion microMappingRegion = realizedPartition.createMicroMappingRegion("«residue»", "_p" + partitionNumber);
		if (QVTm2QVTs.DEBUG_GRAPHS.isActive()) {
			scheduleManager.writeDebugGraphs(microMappingRegion, null);
		}
		realizedPartition.check(microMappingRegion);
		return microMappingRegion;
	}

	private @NonNull MicroMappingRegion createSpeculatedRegion(int partitionNumber) {
		ReachabilityForest reachabilityForest = new ReachabilityForest(getReachabilityRootNodes(), getAvailableNavigableEdges());
		SpeculatedPartition speculatedPartition = new SpeculatedPartition(this, reachabilityForest);
		MicroMappingRegion microMappingRegion = speculatedPartition.createMicroMappingRegion("«speculated»", "_p" + partitionNumber);
		if (QVTm2QVTs.DEBUG_GRAPHS.isActive()) {
			scheduleManager.writeDebugGraphs(microMappingRegion, null);
		}
		speculatedPartition.check(microMappingRegion);
		return microMappingRegion;
	}

	private @NonNull MicroMappingRegion createSpeculatingRegion(int partitionNumber) {
		ReachabilityForest reachabilityForest = new ReachabilityForest(getReachabilityRootNodes(), getAvailableNavigableEdges());
		SpeculatingPartition speculatingPartition = new SpeculatingPartition(this, reachabilityForest);
		MicroMappingRegion microMappingRegion = speculatingPartition.createMicroMappingRegion("«speculating»", "_p" + partitionNumber);
		if (QVTm2QVTs.DEBUG_GRAPHS.isActive()) {
			scheduleManager.writeDebugGraphs(microMappingRegion, null);
		}
		speculatingPartition.check(microMappingRegion);
		return microMappingRegion;
	}

	private @NonNull MicroMappingRegion createSpeculationRegion(int partitionNumber) {
		ReachabilityForest reachabilityForest = new ReachabilityForest(getSpeculationReachabilityRootNodes(), getAvailableNavigableEdges());
		SpeculationPartition speculationPartition = new SpeculationPartition(this, reachabilityForest);
		MicroMappingRegion microMappingRegion = speculationPartition.createMicroMappingRegion("«speculation»", "_p" + partitionNumber);
		if (QVTm2QVTs.DEBUG_GRAPHS.isActive()) {
			scheduleManager.writeDebugGraphs(microMappingRegion, null);
		}
		//			>>>>>>> 4473ebf residue
		speculationPartition.check(microMappingRegion);
		return microMappingRegion;
	}

	//	public @NonNull Iterable<@NonNull Edge> getAlreadyPredicatedEdges() {
	//		return alreadyPredicatedEdges;
	//	}

	public @NonNull Iterable<@NonNull Edge> getAlreadyRealizedEdges() {
		return alreadyRealizedEdges.keySet();
	}

	/**
	 * Return the navigable edges that may be used by to locate nodes by this partition.
	 * The default implementation returns all old primary navigable edges
	 * and all already realized navigable edges
	 */
	private @NonNull Iterable<@NonNull NavigableEdge> getAvailableNavigableEdges() {
		List<@NonNull NavigableEdge> navigableEdges = Lists.newArrayList(getOldPrimaryNavigableEdges());
		for (@NonNull Edge edge : getAlreadyRealizedEdges()) {
			if (edge instanceof NavigableEdge) {
				navigableEdges.add((NavigableEdge) edge);
			}
		}
		return navigableEdges;
	}

	public @NonNull Iterable<@NonNull Node> getConstantInputNodes() {
		return constantInputNodes;
	}

	public @NonNull Iterable<@NonNull Node> getConstantOutputNodes() {
		return constantOutputNodes;
	}

	public @Nullable Iterable<@NonNull TraceClassAnalysis> getConsumedTraceClassAnalyses() {
		return consumedTraceClassAnalyses;
	}

	public @NonNull Iterable<@NonNull NavigableEdge> getCorollaryEdges() {
		return corollaryEdges;
	}

	public @NonNull Iterable<@NonNull Node> getCorollaryNodes() {
		return corollaryNodes;
	}

	public @NonNull Iterable<@NonNull Node> getExecutionNodes() {
		return Iterables.concat(getPredicatedExecutionNodes(), getRealizedExecutionNodes());
	}

	@Override
	public String getName() {
		return region.getName();
	}

	public @NonNull Iterable<@NonNull NavigableEdge> getOldPrimaryNavigableEdges() {
		return oldPrimaryNavigableEdges;
	}

	public @NonNull Iterable<@NonNull Edge> getPredicatedEdges() {
		return predicatedEdges;
	}

	public @NonNull List<@NonNull Node> getPredicatedExecutionNodes() {
		List<@NonNull Node> predicatedExecutionNodes = new ArrayList<>();
		for (@NonNull Node node : getPredicatedMiddleNodes()) {
			if (QVTrNameGenerator.TRACECLASS_PROPERTY_NAME.equals(node.getName())) {
				assert node.isTrace();
				predicatedExecutionNodes.add(node);
			}
		}
		return predicatedExecutionNodes;
	}

	public @NonNull Iterable<@NonNull Node> getPredicatedMiddleNodes() {
		return predicatedMiddleNodes;
	}

	public @NonNull Iterable<@NonNull Node> getPredicatedOutputNodes() {
		return predicatedOutputNodes;
	}

	public @NonNull List<@NonNull Node> getPredicatedWhenNodes() {
		List<@NonNull Node> predicatedWhenNodes = new ArrayList<>();
		for (@NonNull Node node : getPredicatedMiddleNodes()) {
			if (node.getName().startsWith("when_")) {
				predicatedWhenNodes.add(node);
			}
		}
		return predicatedWhenNodes;
	}

	public @Nullable Iterable<@NonNull TraceClassAnalysis> getProducedTraceClassAnalyses() {
		return producedTraceClassAnalyses;
	}

	private @NonNull Iterable<@NonNull Node> getReachabilityRootNodes() {
		Iterable<@NonNull Node> traceNodes = getTraceNodes();
		Iterable<@NonNull Node> constantInputNodes = getConstantInputNodes();
		return Iterables.concat(traceNodes, constantInputNodes);
	}

	public @NonNull Iterable<@NonNull Edge> getRealizedEdges() {
		return realizedEdges;
	}

	public @NonNull List<@NonNull Node> getRealizedExecutionNodes() {
		List<@NonNull Node> realizedExecutionNodes = new ArrayList<>();
		for (@NonNull Node node : getRealizedMiddleNodes()) {
			if (QVTrNameGenerator.TRACECLASS_PROPERTY_NAME.equals(node.getName())) {
				realizedExecutionNodes.add(node);
			}
			//			else if (QVTrelationNameGenerator.DISPATCHCLASS_SELF_NAME.equals(node.getName())) {
			//				realizedExecutionNodes.add(node);
			//			}
		}
		return realizedExecutionNodes;
	}

	public @NonNull Iterable<@NonNull Node> getRealizedMiddleNodes() {
		return realizedMiddleNodes;
	}

	public @NonNull Iterable<@NonNull Node> getRealizedOutputNodes() {
		return realizedOutputNodes;
	}

	public @NonNull List<@NonNull Node> getRealizedWhereNodes() {
		List<@NonNull Node> realizedWhereNodes = new ArrayList<>();
		for (@NonNull Node node : getRealizedMiddleNodes()) {
			if (node.getName().startsWith("where_")) {
				realizedWhereNodes.add(node);
			}
		}
		return realizedWhereNodes;
	}

	public @Nullable AbstractPartition getRealizingPartition(@NonNull Edge edge) {
		return alreadyRealizedEdges.get(edge);
	}

	public @NonNull MappingRegion getRegion() {
		return region;
	}

	protected @NonNull ScheduleManager getScheduleManager() {
		return scheduleManager;
	}

	private @NonNull Iterable<@NonNull Node> getSpeculationReachabilityRootNodes() {
		List<@NonNull Node> rootNodes = new ArrayList<>();
		for (@NonNull Node headNode : QVTscheduleUtil.getHeadNodes(region)) {
			if (!headNode.isDependency()) {
				rootNodes.add(headNode);
			}
		}
		for (@NonNull Node constantInputNode : getConstantInputNodes()) {
			rootNodes.add(constantInputNode);
		}
		return rootNodes;
	}

	public @Nullable SuccessEdge getSuccessEdge(@NonNull Node traceNode) {
		return traceNode2successEdge.get(traceNode);
	}

	public @NonNull Iterable<@NonNull SuccessEdge> getSuccessEdges() {
		return successEdges;
	}

	public @Nullable Node getSuccessNode(@NonNull Node traceNode) {
		SuccessEdge successEdge = traceNode2successEdge.get(traceNode);
		return successEdge != null ? successEdge.getTargetNode() : null;
	}

	public @Nullable Iterable<@NonNull TraceClassAnalysis> getSuperProducedTraceClassAnalyses() {
		List<@NonNull TraceClassAnalysis> producedTraceClassAnalyses2 = producedTraceClassAnalyses;
		if (producedTraceClassAnalyses2 != null) {
			Set<@NonNull TraceClassAnalysis> superProducedTraceClassAnalyses2 = superProducedTraceClassAnalyses;
			if (superProducedTraceClassAnalyses2 == null) {
				superProducedTraceClassAnalyses = superProducedTraceClassAnalyses2 = new HashSet<>();
			}
			for (@NonNull TraceClassAnalysis producedTraceClassAnalysis : producedTraceClassAnalyses2) {
				Iterables.addAll(superProducedTraceClassAnalyses2, producedTraceClassAnalysis.getSuperTraceClassAnalyses());
			}
		}
		return superProducedTraceClassAnalyses;
	}

	public @NonNull TraceClassAnalysis getTraceClassAnalysis(@NonNull Node traceNode) {
		CompleteClass traceClass = traceNode.getCompleteClass();
		return transformationPartitioner.getTraceClassAnalysis(traceClass);
	}

	public @Nullable Edge getTraceEdge(@NonNull Node node) {
		return node2traceEdge.get(node);
	}

	public @NonNull Node getTraceNode() {
		assert traceNodes.size() == 1;
		return ClassUtil.nonNullState(traceNodes.get(0));
	}

	public @NonNull Iterable<@NonNull Node> getTraceNodes() {
		return traceNodes;
	}

	public @NonNull TransformationPartitioner getTransformationPartitioner() {
		return transformationPartitioner;
	}

	/*	private boolean hasNoComputationInputs(@NonNull Node node) {
		for (@NonNull Edge edge : QVTscheduleUtil.getIncomingEdges(node)) {
			if (edge.isComputation()) {
				return false;
			}
		}
		return true;
	} */


	public boolean hasConstantEdge(@NonNull Edge edge) {
		return alreadyConstantEdges.contains(edge);
	}

	public boolean hasLoadedEdge(@NonNull Edge edge) {
		return alreadyLoadedEdges.contains(edge);
	}

	public boolean hasPredicatedEdge(@NonNull Edge edge) {
		return alreadyPredicatedEdges.contains(edge);
	}

	public boolean hasPredicatedNode(@NonNull Node node) {
		return alreadyPredicatedNodes.contains(node);
	}

	public boolean hasRealizedEdge(@NonNull Edge edge) {
		return alreadyRealizedEdges.containsKey(edge);
	}

	public boolean hasRealizedNode(@NonNull Node node) {
		return alreadyRealizedNodes.contains(node);
	}

	public @Nullable List<@NonNull MappingRegion> getCorollaryOf(@NonNull Edge edge) {
		return transformationPartitioner.getCorollaryOf(edge);
	}

	public boolean isCyclic(@NonNull Node node) {
		CompleteClass traceClass = node.getCompleteClass();
		return transformationPartitioner.isCyclic(traceClass);
	}

	private boolean isDead(@NonNull Node node, @Nullable Set<@NonNull Node> knownDeadNodes) {
		if (node.isHead()) {
			return false;
		}
		for (@NonNull Edge edge : QVTscheduleUtil.getIncomingEdges(node)) {
			if (edge.isNavigation()) {
				if ((knownDeadNodes == null) || !knownDeadNodes.contains(edge.getEdgeSource())) {
					return false;
				}
			}
			else if (edge.isPredicate()) {
				if ((knownDeadNodes == null) || !knownDeadNodes.contains(edge.getEdgeSource())) {
					return false;
				}
			}
			//			else if (edge.isExpression() && edge.isPredicated()) {
			//				return false;
			//			}
		}
		for (@NonNull Edge edge : QVTscheduleUtil.getOutgoingEdges(node)) {
			if (edge.isNavigation() || edge.isExpression()) {
				if ((knownDeadNodes == null) || !knownDeadNodes.contains(edge.getEdgeTarget())) {
					return false;
				}
			}
		}
		return true;
	}

	/*	private boolean isDead(@NonNull Edge edge) {
		if (!edge.isExpression()) {
			return false;
		}
		Node node = edge.getTarget();
		for (@NonNull Edge incomingEdge : node.getIncomingEdges()) {
			if ((incomingEdge != edge) && incomingEdge.isMatched()) {
				return false;
			}
		}
		for (@NonNull Edge outgoingEdge : node.getOutgoingEdges()) {
			if (!isDead(outgoingEdge)) {
				return false;
			}
		}
		return true;
	} */

	public @NonNull Iterable<@NonNull MappingRegion> partition() {
		boolean useActivators = scheduleManager.useActivators();
		if (useActivators) {
			return partition4qvtr();		// New algorithms with Dispatch/VerdictRegions to support overriding
		}
		else {
			return partition4qvtc();		// Old algorithms pending debugging and exploitation of new algorithms
		}
	}

	public @NonNull Iterable<@NonNull MappingRegion> partition4qvtc() {
		boolean isCyclic = transformationPartitioner.getCycleAnalysis(this) != null;
		List<@NonNull MappingRegion> newRegions = new ArrayList<>();
		if (!isCyclic) {	// Cycle analysis found no cycles
			newRegions.add(region);
		}
		else {
			if (!predicatedMiddleNodes.isEmpty()) {
				newRegions.add(createSpeculationRegion(newRegions.size()));
				newRegions.add(createSpeculatingRegion(newRegions.size()));
				newRegions.add(createSpeculatedRegion(newRegions.size()));
			}
			else {
				newRegions.add(createRealizedRegion(newRegions.size()));
			}
			ReachabilityForest assignmentReachabilityForest	= new ReachabilityForest(getReachabilityRootNodes(), getAvailableNavigableEdges());
			//
			//	Create an AssignmentRegion for each to-be-realized edge to an output, which may also realize most trace edges too.
			//
			for (@NonNull Edge outputEdge : realizedOutputEdges) {
				if (!hasRealizedEdge(outputEdge)) {
					newRegions.add(createAssignmentRegion(assignmentReachabilityForest, outputEdge, newRegions.size()));
				}
			}
			//
			//	Create an AssignmentRegion for each still to-be-realized edge to an output.
			//
			for (@NonNull Edge edge : realizedEdges) {
				if (!hasRealizedEdge(edge)) {
					newRegions.add(createAssignmentRegion(assignmentReachabilityForest, edge, newRegions.size()));
				}
			}
		}
		if (newRegions.size() > 1) {		// FIXME shouldn't this work anyway when no partitioning was needed?
			check();
		}
		return newRegions;
	}

	public @NonNull Iterable<@NonNull MappingRegion> partition4qvtr() {
		if ((region instanceof DispatchRegion) || (region instanceof VerdictRegion)) {
			return Collections.singletonList(region);
		}
		boolean isCyclic = transformationPartitioner.getCycleAnalysis(this) != null;
		List<@NonNull Node> predicatedWhenNodes = getPredicatedWhenNodes();
		List<@NonNull Node> realizedExecutionNodes = getRealizedExecutionNodes();
		boolean needsActivator = false;
		if (realizedExecutionNodes.size() > 0)	{			// A 'single' realized "trace" node is a boring no-override top activation.
			needsActivator = true;
		}
		else {
			needsActivator = false;
		}
		boolean needsSpeculation = isCyclic && (predicatedWhenNodes.size() > 0); //(dispatchedTraceNodes2.isEmpty() ? !predicatedMiddleNodes.isEmpty() : !predicatedMiddleNodes.containsAll(dispatchedTraceNodes2));
		//
		//	Create the partitioned regions
		//
		List<@NonNull MappingRegion> newRegions = new ArrayList<>();
		if (needsActivator) {
			//
			//	Create an activator to make a QVTr top relation behave as a non-top relation.
			//
			newRegions.add(createActivatorRegion(newRegions.size()));
		}
		if (!needsSpeculation) {
			//
			//	If speculation is not needed just add the functionality as a single region.
			//
			if (newRegions.isEmpty()) {		// i.e. a QVTr non top relation - re-use as is
				newRegions.add(region);
			}
			else {							// i.e. a QVTr top relation - create a residue to finish off the activator
				newRegions.add(createResidualRegion(newRegions.size()));
			}
		}
		else {								// cycles may need speculation and partitioning into isolated actions
			newRegions.add(createNewSpeculationRegion(newRegions.size()));
			newRegions.add(createNewSpeculatingRegion(newRegions.size()));
			newRegions.add(createNewSpeculatedRegion(newRegions.size()));
			ReachabilityForest assignmentReachabilityForest	= new ReachabilityForest(getReachabilityRootNodes(), getAvailableNavigableEdges());
			//
			//	Create an AssignmentRegion for each to-be-realized edge to an output, which may also realize most trace edges too.
			//
			for (@NonNull Edge outputEdge : realizedOutputEdges) {
				if (!hasRealizedEdge(outputEdge)) {
					newRegions.add(createAssignmentRegion(assignmentReachabilityForest, outputEdge, newRegions.size()));
				}
			}
			//
			//	Create an AssignmentRegion for each still to-be-realized edge to an output.
			//
			for (@NonNull Edge edge : realizedEdges) {
				if (!hasRealizedEdge(edge)) {
					newRegions.add(createAssignmentRegion(assignmentReachabilityForest, edge, newRegions.size()));
				}
			}
		}
		if (newRegions.size() > 1) {		// FIXME shouldn't this work anyway when no partitioning was needed?
			check();
		}
		return newRegions;
	}

	@Override
	public String toString() {
		return region.getName();
	}
}

Back to the top