Skip to main content
summaryrefslogtreecommitdiffstats
blob: ae0d2156663ca0b0c10ab05617f457e8a6c0bac3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
<!--  generated by featurizer  -->

# ROOMLanguage
The Real Time Object Oriented Modeling (ROOM)

eTrice comprises several models:

- the ROOM model (*.room) -- defines model classes and the logical structure of the model
- the Config model (*.config) -- defines configuration values for attributes
- the Physical model (*.etphys) -- defines the structure and properties of the physical system
- the Mapping model (*.etmap) -- defines a mapping from logical elements to physical elements


In the following diagram the models and their relations are depicted. The meaning of the arrows is: uses/references.

![Model overview](images/080-models.jpg)

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="4" style="white-space: nowrap;">Contains:</td>
	<td>[LogicalModel](#logicalmodel)
	 </td>
	<td>The LogicalModel describes the logical structure and behavior of a ROOM application</td>
</tr>
<tr>
	<td>[PhysicalModel](#physicalmodel)
	 </td>
	<td>The PhysicalModel defines the setup of your nodes with their attributes like threads and mode of execution</td>
</tr>
<tr>
	<td>[MappingModel](#mappingmodel)
	 </td>
	<td>The MappingModel describes the mapping of elements of the LogicalModel to elements of the PhysicalModel</td>
</tr>
<tr>
	<td>[ConfigModel](#configmodel)
	 </td>
	<td>The ConfigModel describes the Attribute configuration of ActorInstances and PortInstances. </td>
</tr>
</tbody>
</table>

## ConfigModel
The ConfigModel describes the Attribute configuration of ActorInstances and PortInstances. 

The scope of this model is the configuration of Attributes of the LogicalModel.
Thus it provides enhanced capabilities for assigning default values to Attributes, which are:

- type safe value assignment
- setting on class level
- setting on instance level

Values defined for class attributes are used for all instances unless there is an instance value configured for the same attribute.
The configuration is available for actors and ports, thus ActorClasses/ActorRefs and ProtocolClasses/Ports.

```etconfig
ConfigModel ExampleConfig {
	import Example.*

	ActorClassConfig ActorClass1 {
		Attr attribute1 = 4
	}

	ActorInstanceConfig LogSys/subsysRef/actor1 {
		Attr attribute1 = 7
	}
}
```


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[Attribute](#attribute)
	 </td>
	<td>An Attribute is a member variable of a class</td>
</tr>
</tbody>
</table>



---


## LogicalModel
The LogicalModel describes the logical structure and behavior of a ROOM application

The ROOM model defines DataTypes, ProtocolClasses, ActorClasses, SubSystemClasses and LogicalSystems.
Thereby the three latter form a hierarchy. The LogicalSystem is the top level element of the structure. 
It contains references to SubSystemClass elements. The SubSystemClass in turn contains 
references to ActorClass elements which again contain (recursively) references to 
ActorClass elements. The complete structural hierarchy implies a tree which has the 
LogicalSystem as root and where each reference stands for a new node with possibly further 
branches.


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="6" style="white-space: nowrap;">Contains:</td>
	<td>[LogicalSystem](#logicalsystem)
	 </td>
	<td>The LogicalSystem is the topmost structural class. It assembles a distributed system by means of sub systems</td>
</tr>
<tr>
	<td>[SubSystemClass](#subsystemclass)
	 </td>
	<td>A SubSystem is the topmost building block of the executable part of an system</td>
</tr>
<tr>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td>[ProtocolClass](#protocolclass)
	 </td>
	<td>A ProtocolClass defines messages and is the interface specification for a Port</td>
</tr>
<tr>
	<td>[DataType](#datatype)
	 </td>
	<td>A DataType can take 4 forms and types data elements like an Attribute or Operation argument</td>
</tr>
<tr>
	<td>[AnnotationType](#annotationtype)
	 </td>
	<td>AnnotationTypes can be used to tag ROOM classes for further custom processing</td>
</tr>
</tbody>
</table>



---


### ActorClass
An actor is the basic structural building block for building systems with ROOM

An ActorClass consists of three main parts:

- **Interface** (external interface) specifies the communication to 'outside' actors and consists of Ports.
- **Structure** (internal interface) contains Ports, Attributes and ActorRefs. These elements are accessible from the Behavior part of the actor (in contrary to the external interface above). An ActorClass can be composed of other actors again by declaring ActorRefs. Also this part declares the connection of ports in form of Bindings and LayerConnections.
- **Behavior** is described by the StateMachine. It can receive and send messages from the ports, declared in the Structure above. The Attributes can be used to store data during an state transition. Furthermore it is possible to declare Operations. They can be used to define reusable logic, that is invoked during a state transition.


![ActorClass](images/040-ActorClass.png)

```room
 ActorClass ExampleActorClass {
	 Interface {
		 Port port1: ProtocolClass1
		 Port port4: ProtocolClass1
	 }
	 Structure {
		 external Port port1
		 conjugated Port port2: ProtocolClass1
		 conjugated Port port3: ProtocolClass1
		 
		 ActorRef ActorRef_A: ActorClass2
		 ActorRef ActorRef_B: ActorClass3
		 
		 Binding port2 and ActorRef_A.port5
		 // ...
	 }
	 Behavior {
		 // ...
	 }
 }
```


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="12" style="white-space: nowrap;">Contains:</td>
	<td>[ExecutionType](#executiontype)
	 </td>
	<td>Determines the execution type of an actor</td>
</tr>
<tr>
	<td>[ActorRef](#actorref)
	 </td>
	<td>An ActorRef is an instance of an ActorClass</td>
</tr>
<tr>
	<td>[Port](#port)
	 </td>
	<td>A Port is an instance of a ProtocolClass and the interface for an ActorClass</td>
</tr>
<tr>
	<td>[SAP](#sap)
	 </td>
	<td>A Service Access Point is similar to a Port, but uses a LayerConnection for wiring</td>
</tr>
<tr>
	<td>[SPP](#spp)
	 </td>
	<td>A Service Provision Point is the counterpart of a SAP</td>
</tr>
<tr>
	<td>[ServiceImplementation](#serviceimplementation)
	 </td>
	<td>The implementation of an Service Provision Point (SPP)</td>
</tr>
<tr>
	<td>[Binding](#binding)
	 </td>
	<td>A Binding connects two Ports with each other</td>
</tr>
<tr>
	<td>[LayerConnection](#layerconnection)
	 </td>
	<td>A LayerConnection associates a SPP to an ActorRef, resulting in an connection of all SAPs on its instance hierarchy</td>
</tr>
<tr>
	<td>[Attribute](#attribute)
	 </td>
	<td>An Attribute is a member variable of a class</td>
</tr>
<tr>
	<td>[Operation](#operation)
	 </td>
	<td>An Operation is a member function of a class</td>
</tr>
<tr>
	<td>[StateMachine](#statemachine)
	 </td>
	<td>A StateMachine describes the state based, event driven behavior of an ActorClass</td>
</tr>
<tr>
	<td>[Annotation](#annotation)
	 </td>
	<td>An Annotation can be attached to a ROOM class to specify the properties of its AnnotationType</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[Inheritance](#inheritance)
	 </td>
	<td>A class can specify a single super class and inherits elements from the super class hierarchy</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Typecasts:</td>
	<td>[ActorRef](#actorref)
	 </td>
	<td>An ActorRef is an instance of an ActorClass</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[LogicalModel](#logicalmodel)
	 </td>
	<td>The LogicalModel describes the logical structure and behavior of a ROOM application</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is edited by:</td>
	<td>[GraphicalStructureEditor](#graphicalstructureeditor)
	 </td>
	<td>The Structure Editor allows to edit the ActorClass' Structure in a convenient way. It is possible to create and arrange actor references and ports and to create bindings and layer connections.</td>
</tr>
</tbody>
</table>

**Example**:


---


### ActorRef
An ActorRef is an instance of an ActorClass

- ActorClass: The type of the ActorRef
- Multiplicity: The number of instances. A number greater than one can be seen as an array of instances
- Reference Type: Can be fixed or optional. Fixed requires an integer multiplicity and results in an static instantiation with an fixed number of instances during runtime . Optional denotes an dynamic instantiation, where ActorRefs can be created in arbitrary number during runtime. In this case, the multiplicity has to be set to '*'

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th>Properties</th>
	<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
	<td>multiplicity</td>
	<td><em>1..n</em>, <em>*</em></td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is of type:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[Replication](#replication)
	 </td>
	<td>Replication is mechanism for multi-instantiation for ActorRefs and Ports</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Is contained in:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td>[SubSystemClass](#subsystemclass)
	 </td>
	<td>A SubSystem is the topmost building block of the executable part of an system</td>
</tr>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Is edited by:</td>
	<td>[GraphicalStructureEditor](#graphicalstructureeditor)
	 </td>
	<td>The Structure Editor allows to edit the ActorClass' Structure in a convenient way. It is possible to create and arrange actor references and ports and to create bindings and layer connections.</td>
</tr>
<tr>
	<td>[ActorRefPropertyDialog](#actorrefpropertydialog)
	 </td>
	<td>A dialog to edit properties of an ActorRef.</td>
</tr>
</tbody>
</table>

**Example**:

```room
SubSystemClass SubSystemExample {
	ActorRef mainActor : ActorClassExample
	
	LogicalThread default_thread
}

ActorClass ActorClassExample {
	Structure {
		ActorRef sender : Sender
		ActorRef receiver : Receiver
		
		Binding receiver.port and sender.port
	}
}

ActorClass ActorClassExampleReplicated {
	Structure {
		ActorRef sender[3]: Sender
		ActorRef receiver[3] : Receiver
		
		Binding receiver.port and sender.port
		/* Equivalent to:
		 *  Binding receiver[1].port and sender[1].port
		 *  Binding receiver[2].port and sender[2].port
		 * ....
		 */		
	}
}
```

![ActorRef instance diagram](images/300-ActorRefInstanceDiagram.jpg)

Instance hierarchy of ActorRef Example (*System(System)* not shown in code snippet)


---


### Annotation
An Annotation can be attached to a ROOM class to specify the properties of its AnnotationType

It refers to an AnnotationType and may have to pass key value pairs. Its notation is similar to Java:

```room
@AnnotationType1
@AnnotationType2(key1="STRING", key2=3, ...)
```

See section Annotations for further reading.


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is of type:</td>
	<td>[AnnotationType](#annotationtype)
	 </td>
	<td>AnnotationTypes can be used to tag ROOM classes for further custom processing</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="5" style="white-space: nowrap;">Is contained in:</td>
	<td>[LogicalSystem](#logicalsystem)
	 </td>
	<td>The LogicalSystem is the topmost structural class. It assembles a distributed system by means of sub systems</td>
</tr>
<tr>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td>[SubSystemClass](#subsystemclass)
	 </td>
	<td>A SubSystem is the topmost building block of the executable part of an system</td>
</tr>
<tr>
	<td>[ProtocolClass](#protocolclass)
	 </td>
	<td>A ProtocolClass defines messages and is the interface specification for a Port</td>
</tr>
<tr>
	<td>[DataClass](#dataclass)
	 </td>
	<td>A DataClass is a composition of Attributes</td>
</tr>
</tbody>
</table>

**Example**:

```room
import etrice.api.annotations.BehaviorManual

ActorClass ComponentAbstraction {
	Interface {
		conjugated Port port1: Protocol1
	}
	Structure {
		external Port port1
	}
	Behavior {
		// custom/external state machine implementation
		@BehaviorManual
	}
}
```

---


### AnnotationType
AnnotationTypes can be used to tag ROOM classes for further custom processing

They provide the ability to associate custom properties to ROOM classes, that adjust or toggle features, like generation or the runtime behavior.
eTrice comes with predefined annotations, which can be found in Annotations.room within the eTrice modellib.

See section Annotations for further reading.



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Typecasts:</td>
	<td>[Annotation](#annotation)
	 </td>
	<td>An Annotation can be attached to a ROOM class to specify the properties of its AnnotationType</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[LogicalModel](#logicalmodel)
	 </td>
	<td>The LogicalModel describes the logical structure and behavior of a ROOM application</td>
</tr>
</tbody>
</table>


---


### Attribute
An Attribute is a member variable of a class

An Attribute can be be used to store arbitrary data. There are two common conceptual purpose of use:


- model current system state (state machine variable)
- store reference to more fine-grained components (e.g. c pointer to handle)

Attributes can be defined in several ROOM classes.

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th>Properties</th>
	<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
	<td>defaultValueLiteral</td>
	<td><em>target code</em></td>
</tr>
<tr>
	<td>multiplicity</td>
	<td><em>1..n</em></td>
</tr>
<tr>
	<td>ref</td>
	<td></td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is of type:</td>
	<td>[DataType](#datatype)
	 </td>
	<td>A DataType can take 4 forms and types data elements like an Attribute or Operation argument</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="3" style="white-space: nowrap;">Is contained in:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td>[ProtocolClass](#protocolclass)
	 </td>
	<td>A ProtocolClass defines messages and is the interface specification for a Port</td>
</tr>
<tr>
	<td>[DataClass](#dataclass)
	 </td>
	<td>A DataClass is a composition of Attributes</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is used by:</td>
	<td>[ConfigModel](#configmodel)
	 </td>
	<td>The ConfigModel describes the Attribute configuration of ActorInstances and PortInstances. </td>
</tr>
</tbody>
</table>

**Example**:

```room
import etrice.api.types.*

DataClass SimpleDataClass {
	Attribute attribute1: int16
	Attribute attribute2: uint32
}

ActorClass ActorClassWithAttributes {
	Structure {
		/** attribute of a PrimitiveType */
		Attribute attribute1: int32
		/** attribute of a DataClass */
		Attribute attribute2: SimpleDataClass
	}
}

ActorClass ActorClassWithAttributes2 {
	Structure {
		/** attribute with multiplicity */
		Attribute arrayAttribute[8] : uint32
		/** attribute as a reference (void pointer) */
		Attribute refAttribue : voidType ref
	}
}

ActorClass ActorClassWithAttributeInitialization {
	Structure {
		Attribute attribute1: uint32 = "3"
		Attribute attribute2: SimpleDataClass = "{1, 2}"
		Attribute arrayAttribute[8] : uint32 = "0" // or {0,0,0, ...}
		Attribute refAttribue : voidType ref = "NULL" // set reference in constructor or in state machine
	}
}
```

---


### Binding
A Binding connects two Ports with each other

In essence, a binding is a abstraction for an underlying communication channel whose function is to convey messages from one port to the other.
The precise semantics of these channels are not defined in the Binding. Instead, they are determined by the ProtocolClasses that are associated with the Ports at the end of the Binding.

```room
ActorClass ExampleActorClass {
	Structure {
		conjugated Port sender: ProtocolClass1
		ActorRef actorRef: ActorClass2
		
		Binding sender and actorRef.receiver
	}
}
```


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Uses:</td>
	<td>[Port](#port)
	 : endpoint1</td>
	<td>A Port is an instance of a ProtocolClass and the interface for an ActorClass</td>
</tr>
<tr>
	<td>[Port](#port)
	 : endpoint2</td>
	<td>A Port is an instance of a ProtocolClass and the interface for an ActorClass</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Is contained in:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td>[SubSystemClass](#subsystemclass)
	 </td>
	<td>A SubSystem is the topmost building block of the executable part of an system</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is edited by:</td>
	<td>[GraphicalStructureEditor](#graphicalstructureeditor)
	 </td>
	<td>The Structure Editor allows to edit the ActorClass' Structure in a convenient way. It is possible to create and arrange actor references and ports and to create bindings and layer connections.</td>
</tr>
</tbody>
</table>


---


### CPBranchTransition
a choice point branch transition is an outgoing transition from a choice point and is traversed if its conditions is evaluated to true

A choice point together with its outgoing transitions can be thought of as a if, else-if, else cascade in traditional
		programming languages. The choice point branch transition corresponds to an if clause while the final else is modeled as
		a continuation transition. Coming from a choice point, a choice point branch transition is traversed whenever its
		condition evaluates to true. No order of evaluations is guaranteed.


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[Transition](#transition)
	 </td>
	<td>A Transition is an edge in the state graph representation of the state machine</td>
</tr>
</tbody>
</table>



---


### ChoicePoint
a choice point is the state machine counterpart of a conditional statement

A ChoicePoint in ROOM has one incoming transition and an arbitrary number of outgoing transitions.
One of the outgoing transitions has no condition (a ContinuationTransition). It is the default branch that is taken
if none of the transition conditions evaluated to true. All other transitions going out from the ChoicePoint
are CPBranchTransitions which have a mandatory condition (keyword 'cond'). The evaluation order of the conditions
is not deterministic.


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[StateGraphNode](#stategraphnode)
	 </td>
	<td>A StateGraphNode is an abstract node of the state graph</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[ContinuationTransition](#continuationtransition)
	 </td>
	<td>the continuation transition is a transition with just an optional action code</td>
</tr>
</tbody>
</table>



---


### CommunicationType
The CommunicationType defines the communication semantics of a ProtocolClass

Since from ROOM models executable code can be generated, it is important to define the way the actors are executed and communicate with each other.
The combination of communication and execution is called the *execution model*. Therefore the ExecutionType of an actor and the CommunicationType of the ports has to be considered.

The CommunicationType of a ProtocolClass (and thus of a Port) specifies in which way the communication should happen:

- **message driven** -- asynchronous, non blocking, no return value: Usually the message driven communication is implemented with message queues. Message queues are inherently asynchronous and enable a very good decoupling of the communicating parties.
- **data driven** -- asynchronous, non blocking, no return value: In data driven communication sender and receiver often have a shared block of data. The sender writes the data and the receiver polls the data.
- _**function call** -- synchronous, blocking, return value: Regular function call as known in most programming languages._ (not supported yet)

CommunicationType relates with the [ExecutionType][] of an ActorClass, e.g. a data-driven port needs a cyclic thread, that polls the shared data.

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th>Properties</th>
	<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
	<td>type</td>
	<td><em>eventdriven</em>, <em>datadriven</em>, <em>sync</em></td>
</tr>
</tbody>
</table>


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[ProtocolClass](#protocolclass)
	 </td>
	<td>A ProtocolClass defines messages and is the interface specification for a Port</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is used by:</td>
	<td>[ExecutionType](#executiontype)
	 </td>
	<td>Determines the execution type of an actor</td>
</tr>
</tbody>
</table>

**Example**:

```room

import etrice.api.types.*

/** default is eventdriven */
ProtocolClass EventdrivenProtocolClass1 {
	// explicit: eventdriven ProtocolClass EventdrivenProtocolClass {
	incoming {
		/** message without data */
		Message msg1()
		/** message with data */
		Message msg2(int32)
	}
	outgoing {
		/** eventdriven ProtocolClass can have message into two directions */
		Message msg4()
	}
}

datadriven ProtocolClass DatadrivenProtocolClass {
	incoming {
		/** a datadriven message needs data */
		Message signal1 (int32)
	}
	// datadriven ProtocolClass can only have incoming messages (signals)
}

//  sync is not supported yet
//	sync ProtocolClass SyncProtcolClass { 
//		
//	}
```

---


### ContinuationTransition
the continuation transition is a transition with just an optional action code

A continuation transition is used as default branch of a choice point or as outgoing transition of an entry point


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[Transition](#transition)
	 </td>
	<td>A Transition is an edge in the state graph representation of the state machine</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is used by:</td>
	<td>[ChoicePoint](#choicepoint)
	 </td>
	<td>a choice point is the state machine counterpart of a conditional statement</td>
</tr>
</tbody>
</table>


---


### DataClass
A DataClass is a composition of Attributes

Intended to model a type that primarily consists of data, which is usually grouped together in some manner. DataClasses roughly translate to Java classes without interaction or C <em>struct</em>s.

```room
DataClass TCPConnectionData {
	Attribute IPAddr: string
	Attribute TcpPort: int32
}
```


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[DataType](#datatype)
	 </td>
	<td>A DataType can take 4 forms and types data elements like an Attribute or Operation argument</td>
</tr>
<tr>
	<td rowspan="3" style="white-space: nowrap;">Contains:</td>
	<td>[Attribute](#attribute)
	 </td>
	<td>An Attribute is a member variable of a class</td>
</tr>
<tr>
	<td>[Operation](#operation)
	 </td>
	<td>An Operation is a member function of a class</td>
</tr>
<tr>
	<td>[Annotation](#annotation)
	 </td>
	<td>An Annotation can be attached to a ROOM class to specify the properties of its AnnotationType</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[Inheritance](#inheritance)
	 </td>
	<td>A class can specify a single super class and inherits elements from the super class hierarchy</td>
</tr>
</tbody>
</table>


**Example**:

```room
DataClass SimpleDataClass {
	Attribute attribute1: uint16
	Attribute attribute2: uint32
}

DataClass DataClassExample {
	Attribute attribute1: uint32
	Attribute attribute2: SimpleDataClass
	Attribute attribute3: voidType ref
	
	Operation operation1(param1: uint32, param2: uint16): boolean '''
		return true;
	'''
}
```

---


### DataType
A DataType can take 4 forms and types data elements like an Attribute or Operation argument




<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="4" style="white-space: nowrap;">Inheriting features:</td>
	<td>[PrimitiveType](#primitivetype)
	 </td>
	<td>A PrimitiveType is an abstraction of a target language's basic type (e.g. integer or boolean)</td>
</tr>
<tr>
	<td>[Enumeration](#enumeration)
	 </td>
	<td>An EnumerationType declares an enumeration similar to most well-known languages</td>
</tr>
<tr>
	<td>[DataClass](#dataclass)
	 </td>
	<td>A DataClass is a composition of Attributes</td>
</tr>
<tr>
	<td>[ExternalType](#externaltype)
	 </td>
	<td>An ExternalType is used to make an target language type accessible in ROOM</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Typecasts:</td>
	<td>[Attribute](#attribute)
	 </td>
	<td>An Attribute is a member variable of a class</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[LogicalModel](#logicalmodel)
	 </td>
	<td>The LogicalModel describes the logical structure and behavior of a ROOM application</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is used by:</td>
	<td>[Operation](#operation)
	 </td>
	<td>An Operation is a member function of a class</td>
</tr>
</tbody>
</table>


---


### EntryPoint
an entry point is an explicit entry point in a sub state machine to which transitions in the parent state graph can connect

text


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[TrPoint](#trpoint)
	 </td>
	<td>a TrPoint can be an EntryPoint, an ExitPoint or a TransitionPoint</td>
</tr>
</tbody>
</table>



---


### Enumeration
An EnumerationType declares an enumeration similar to most well-known languages


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th>Properties</th>
	<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
	<td>literals</td>
	<td><em>name</em></td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[DataType](#datatype)
	 </td>
	<td>A DataType can take 4 forms and types data elements like an Attribute or Operation argument</td>
</tr>
</tbody>
</table>


**Example**:

```room
Enumeration EOnOff {
	Off = 0, // explicit value=0
	On = 1 // explicit value=1 
}

Enumeration EDay {
	SUN,
	MON,
	TUE,
	WED,
	THU,
	FRI,
	SAT // implicit enumeration 0..6
}
```

---


### ExecutionType
Determines the execution type of an actor

Since from ROOM models executable code can be generated, it is important to define the way the actors are 
executed and communicate with each other. The combination of communication and execution is called the 
*execution model*. Therefore the ExecutionType of an actor and the CommunicationType of the ports has to be considered.

The ExecutionType of an ActorClass specifies in which way its instance (ActorRef) should be executed:

- **execution by receive event**: The message queue or the event dispatcher calls a **receive event** function of the message receiver and thereby executes the processing of the event.
- **polled execution**: The objects are processed by a cyclic **execute** call
- _**execution by function call**: The caller executes the called object via function call_ (not supported yet)
- **mixture**: An asynchronous execution combines an event dispatcher and a polled execution.


Thereby the ExecutionType determines the execution mode of the actor's logical thread:

![Thread of Control](images/010-RoomIntroduction03.png)
		
The actual execution of the underlying physical thread can be specified in the PhysicalModel in conjunction with the MappingModel.

ExecutionType relates to the [CommunicationType][], e.g. if an actor uses data-driven ports, it should support an polled execution.

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th>Properties</th>
	<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
	<td>mode</td>
	<td><em>eventdriven</em>, <em>datadriven</em>, <em>async</em>, <em>sync</em></td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[CommunicationType](#communicationtype)
	 </td>
	<td>The CommunicationType defines the communication semantics of a ProtocolClass</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
</tbody>
</table>

**Example**:

```room
/** default is eventdriven */
eventdriven ActorClass EventdrivenActor {
	// only event-driven Ports and ActorRefs allowed
}

datadriven ActorClass DatadrivenActor {
	// only data-driven Ports and ActorRefs allowed
}

async ActorClass MixedActor{
	// both data/event-driven Ports and ActorRefs allowed
}
```

---


### ExitPoint
an exit point is an explicit exit point in a sub state machine from which transitions in the parent state graph can start

text


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[TrPoint](#trpoint)
	 </td>
	<td>a TrPoint can be an EntryPoint, an ExitPoint or a TransitionPoint</td>
</tr>
</tbody>
</table>



---


### ExternalEndPort
A ExternalEndPort is an interface Port, that is made accessible to the internal interface of an ActorClass

```room
ActorClass ExternalEndPortExample {
	Interface {
		// externalEndPort is connect from 'outside' and thus needs a Binding from containing ActorClass
		Port externalEndPort : PSimpleProtocol
	}
	Structure {
		external Port externalEndPort
	}
	Behavior {
		// send/receive messages from externalEndPort
	}
}
```


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[Port](#port)
	 </td>
	<td>A Port is an instance of a ProtocolClass and the interface for an ActorClass</td>
</tr>
</tbody>
</table>



---


### ExternalType
An ExternalType is used to make an target language type accessible in ROOM


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th>Properties</th>
	<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
	<td>targetName</td>
	<td><em>identifier name</em></td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[DataType](#datatype)
	 </td>
	<td>A DataType can take 4 forms and types data elements like an Attribute or Operation argument</td>
</tr>
</tbody>
</table>


**Example**:

```room
// Include is needed when used (e.g. in ActorClassWithExternalType)
ExternalType someStructType -> "struct FILE_HANDLE"

ActorClass ActorClassWithExternalType{
	Structure {
		usercode1 '''
			// #include <___.h> /* User includes here*/
		'''
		Attribute someHandle : someStructType ref // needs include
	}
	Behavior {
		Operation operation1(param1: charPtr) '''
			// external calls or casts may need includes
			write(someHandle, param1);
		'''
	}
}
```

---


### Inheritance
A class can specify a single super class and inherits elements from the super class hierarchy

When a ROOM class specifies a super class, it generally inherits all elements and properties.
In several cases, it is possible, to override these inherited elements. Generally, eTrice has two semantics of overriding: refinement and replacement.
Refinement is used in most cases (e.g. StateMachine) and realizes an extension of the overridden elements.
In this case, if a sub class overrides a piece of logic from a super class, it will always be executed subsequently to the inherited.
Contrary to this, replacement is applied to overridden Operations, similar to programming languages C++ and Java.

A formal definition of several variants of overriding is given below:

- early or late resolve - if element is overridden, which one should the super class use by default - own or override?
- replacing or refining - ignore inherited code or prepend inherited code automatically?
- (non-)accessible - if element is overridden, is super class' original accessible from sub class? E.g. super.foo()
- implicit or explicit - does it use a distinct model element or keyword?


Examples from programming languages:
C++ virtual function and Java override  <==> accessible, explicit, late, replacing
C++ function redefine <==> accessible, implicit, early, replacing
C++ destructor <==> late, refining\\

eTrice override of model elements:
Operations (C generation)  <==> non-accessible, explicit, late, replacing
Operations (Java generation) <==> accessible, explicit, late, replacing
State and Transitions <==> non-accessible, explicit, late, refining
ctor/dtor <==> non-accessible, implicit, late, refining
StateMachine <==> non-accessible, implicit, late, refining
UserCode <==> non-accessible, implicit, late, refining



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="9" style="white-space: nowrap;">Is used by:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td>[StateMachine](#statemachine)
	 </td>
	<td>A StateMachine describes the state based, event driven behavior of an ActorClass</td>
</tr>
<tr>
	<td>[StateGraphNode](#stategraphnode)
	 </td>
	<td>A StateGraphNode is an abstract node of the state graph</td>
</tr>
<tr>
	<td>[State](#state)
	 </td>
	<td>A State can be a plain State or a RefinedState</td>
</tr>
<tr>
	<td>[SimpleState](#simplestate)
	 </td>
	<td>A State is a node in the state graph representation of the state machine</td>
</tr>
<tr>
	<td>[RefinedState](#refinedstate)
	 </td>
	<td>A RefinedState refines a State of one of the Actor's base class state machines</td>
</tr>
<tr>
	<td>[Transition](#transition)
	 </td>
	<td>A Transition is an edge in the state graph representation of the state machine</td>
</tr>
<tr>
	<td>[ProtocolClass](#protocolclass)
	 </td>
	<td>A ProtocolClass defines messages and is the interface specification for a Port</td>
</tr>
<tr>
	<td>[DataClass](#dataclass)
	 </td>
	<td>A DataClass is a composition of Attributes</td>
</tr>
</tbody>
</table>

**Example**:

```room
ActorClass ActorSubClass extends ActorBaseClass {
	// inherits all elements from super type hierarchy
}

ActorClass ActorBaseClass {
	Interface {
		Port port1 : ProtocolBaseClass
	}
	Structure {
		Attribute attribute1 : uint32
	}
	Behavior {
		Operation operation1() '''
			return;
		'''
	}
}

ProtocolClass ProtocolSubClass extends ProtocolBaseClass {
	// inherits all elements from super type hierarchy
}

ProtocolClass ProtocolBaseClass {
	incoming {
		Message message1()
	}
}

DataClass DataSubClass extends DataBaseClass {
	// inherits all elements from super type hierarchy
}

DataClass DataBaseClass {
	Attribute attribute1 : uint32
}
```

---


### InitialTransition
the initial transition is used to identify the initial state

The initial transition connects the initial point to a state. There can be at most one initial transition
		in a state machine. Under special circumstances the initial transition can be omitted.


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[Transition](#transition)
	 </td>
	<td>A Transition is an edge in the state graph representation of the state machine</td>
</tr>
</tbody>
</table>



---


### InternalEndPort
A InternalEndPort is an local Port, that is declared in the internal interface of an ActorClass

```room
ActorClass InternalEndPortExample {
	Structure {
		Port internalEndPort : PSimpleProtocol
		ActorRef actorRef1 : SimpleActorClass
		
		// internalEndPort lives 'local' and
		// thus needs a Binding to port of a ActorRef
		Binding internalEndPort and actorRef1.externalPort2 
	}
	Behavior {
		// send/receive messages from internalEndPorts
	}
}
```
![InternalEndPort](images/300-InternalEndPort.png)


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[Port](#port)
	 </td>
	<td>A Port is an instance of a ProtocolClass and the interface for an ActorClass</td>
</tr>
</tbody>
</table>



---


### LayerConnection
A LayerConnection associates a SPP to an ActorRef, resulting in an connection of all SAPs on its instance hierarchy


- An actor class can define a Service Provision Point (SPP) to publish a specific service, defined by a protocol class
- An actor class can define a Service Access Point (SAP) if it needs a service, defined by a protocol class
- For a given actor hierarchy, a LayerConnection defines which SAP will be satisfied by (connected to) which SPP



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Uses:</td>
	<td>[SAP](#sap)
	 : SAPoint</td>
	<td>A Service Access Point is similar to a Port, but uses a LayerConnection for wiring</td>
</tr>
<tr>
	<td>[SPP](#spp)
	 : SPPoint</td>
	<td>A Service Provision Point is the counterpart of a SAP</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Is contained in:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td>[SubSystemClass](#subsystemclass)
	 </td>
	<td>A SubSystem is the topmost building block of the executable part of an system</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is edited by:</td>
	<td>[GraphicalStructureEditor](#graphicalstructureeditor)
	 </td>
	<td>The Structure Editor allows to edit the ActorClass' Structure in a convenient way. It is possible to create and arrange actor references and ports and to create bindings and layer connections.</td>
</tr>
</tbody>
</table>


---


### LogicalSystem
The LogicalSystem is the topmost structural class. It assembles a distributed system by means of sub systems

It describes the logical topology of your distributed system and is composed of sub systems (SubSystemRefs). Thus it is the notationally root of every instance path or actor hierarchy.


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Contains:</td>
	<td>[SubSystemRef](#subsystemref)
	 </td>
	<td>A Sub System Reference is an instance of an SubSystemClass</td>
</tr>
<tr>
	<td>[Annotation](#annotation)
	 </td>
	<td>An Annotation can be attached to a ROOM class to specify the properties of its AnnotationType</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[LogicalModel](#logicalmodel)
	 </td>
	<td>The LogicalModel describes the logical structure and behavior of a ROOM application</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is used by:</td>
	<td>[MappingModel](#mappingmodel)
	 </td>
	<td>The MappingModel describes the mapping of elements of the LogicalModel to elements of the PhysicalModel</td>
</tr>
</tbody>
</table>


---


### Operation
An Operation is a member function of a class

Operations can be used to define a piece of reusable logic. The definition consists of:

- Arbitrary amount of arguments
- Return type
- User code body, which can access the structural part of the containing class (e.g. attributes)
- 'override' keyword, replaces the logic of the inherited operation having the same signature


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th>Properties</th>
	<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
	<td>returnType</td>
	<td><em>DataType</em></td>
</tr>
<tr>
	<td>arguments</td>
	<td><em>name : DataType</em></td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[DataType](#datatype)
	 </td>
	<td>A DataType can take 4 forms and types data elements like an Attribute or Operation argument</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="3" style="white-space: nowrap;">Is contained in:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td>[ProtocolClass](#protocolclass)
	 </td>
	<td>A ProtocolClass defines messages and is the interface specification for a Port</td>
</tr>
<tr>
	<td>[DataClass](#dataclass)
	 </td>
	<td>A DataClass is a composition of Attributes</td>
</tr>
</tbody>
</table>

**Example**:

```room
import etrice.api.types.*

DataClass DataClassWithOperation {
	Attribute attribute1 : uint32
	
	Operation operation1(param1: uint32, param2: int32): boolean '''
		return attribute1 > (param1 - param2);
	'''
}

ActorClass ActorClassWithOperation {
	Structure {
		Attribute attribute1 : uint32
	}
	Behavior {
		Operation operation1(param1: uint32, param2: int32): boolean '''
			return attribute1 > (param1 - param2);
		'''
	}
}

ActorClass ActorClassWithOperation2 {
	Structure {
		usercode1 '''
			// #include <___.h> /* User includes here */
		'''
		Attribute someHandle : voidType ref
	}
	Behavior {
		Operation operation1(param1: charPtr) '''
			// external calls or casts may need includes
			write(someHandle, param1);
		'''
	}
}
```

---


### Port
A Port is an instance of a ProtocolClass and the interface for an ActorClass

Once a ProtocolClass has been created, it can be used to define actor interfaces. This is accomplished by means of Ports. 
A Port is a declaration that the set of messages defined by its ProtocolClass is now part of the actor's interface.
It provides strong decoupling of ActorClasses from each other, thus enabling easy testability, reusability and deployment of actors to different threads or nodes.

```room
ActorClass Example {
	Structure{
		Port port0 : ProtocolClass1
	}
	Behavior {
		// send/receive message from port0
	}
}
```

For communication between two actors to take place, a connection must be established between a port on one of the actors and a port on the other.
One condition is, that both Ports have compatible ProtocolClasses. In most cases the Ports simply refer to the same protocol.
In addition, a ProtocolClass has an imposed directionality - it defines one subset of messages as incoming and the complementary subset as outgoing.
Which subset is labeled as incoming and outgoing is arbitrary, it simply depends on the point of view, that was taken when defining.
Therefore Ports can be 'regular' and 'conjugated'. When two actors communicate by a connected pair of Ports, one Port has to be regular and the other conjugated.
The ProtocolClass' incoming messages are on one side received by the regular Port and on the other sent by the conjugated Port (outgoing message vice versa).

A connection of Ports is denoted by a Binding. 

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th>Properties</th>
	<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
	<td>conjugated</td>
	<td><em>regular</em>, <em>conjugated</em></td>
</tr>
<tr>
	<td>multiplicity</td>
	<td><em>1..n</em>, <em>*</em></td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is of type:</td>
	<td>[ProtocolClass](#protocolclass)
	 </td>
	<td>A ProtocolClass defines messages and is the interface specification for a Port</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[Replication](#replication)
	 </td>
	<td>Replication is mechanism for multi-instantiation for ActorRefs and Ports</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="3" style="white-space: nowrap;">Inheriting features:</td>
	<td>[RelayPort](#relayport)
	 </td>
	<td>A RelayPort forwards its messages without exposing them to the internal interface of the ActorClass</td>
</tr>
<tr>
	<td>[ExternalEndPort](#externalendport)
	 </td>
	<td>A ExternalEndPort is an interface Port, that is made accessible to the internal interface of an ActorClass</td>
</tr>
<tr>
	<td>[InternalEndPort](#internalendport)
	 </td>
	<td>A InternalEndPort is an local Port, that is declared in the internal interface of an ActorClass</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Is edited by:</td>
	<td>[GraphicalStructureEditor](#graphicalstructureeditor)
	 </td>
	<td>The Structure Editor allows to edit the ActorClass' Structure in a convenient way. It is possible to create and arrange actor references and ports and to create bindings and layer connections.</td>
</tr>
<tr>
	<td>[PortPropertyDialog](#portpropertydialog)
	 </td>
	<td>A dialog to edit properties of an Port.</td>
</tr>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Is used by:</td>
	<td>[Binding](#binding)
	 : endpoint1</td>
	<td>A Binding connects two Ports with each other</td>
</tr>
<tr>
	<td>[Binding](#binding)
	 : endpoint2</td>
	<td>A Binding connects two Ports with each other</td>
</tr>
</tbody>
</table>


---


### PrimitiveType
A PrimitiveType is an abstraction of a target language's basic type (e.g. integer or boolean)


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th>Properties</th>
	<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
	<td>targetName</td>
	<td><em>identifier name</em></td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[DataType](#datatype)
	 </td>
	<td>A DataType can take 4 forms and types data elements like an Attribute or Operation argument</td>
</tr>
</tbody>
</table>


**Example**:

The eTrice built-in types can be found in the _org.eclipse.etrice.modellib_ project. In most cases the _Types.room_ is already included:

```room
// Follow import by Open Declaration (F3)
import etrice.api.types.*
```

---


### ProtocolClass
A ProtocolClass defines messages and is the interface specification for a Port

A ProtocolClass provides a reusable interface specification for ports. It defines a set of incoming and outgoing Messages that can be exchanged between two ports.
The exact semantics of a message is defined by the CommunicationType.
Protocol classes have only textual notation.

```room
ProtocolClass SimpleProtocolClass {
	incoming {
		Message msg1(int32}
		Message msg2()
	}
	outgoing {
		Message msg3(DataClass1}
		Message msg4()
	}
}
```


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="4" style="white-space: nowrap;">Contains:</td>
	<td>[CommunicationType](#communicationtype)
	 </td>
	<td>The CommunicationType defines the communication semantics of a ProtocolClass</td>
</tr>
<tr>
	<td>[Attribute](#attribute)
	 </td>
	<td>An Attribute is a member variable of a class</td>
</tr>
<tr>
	<td>[Operation](#operation)
	 </td>
	<td>An Operation is a member function of a class</td>
</tr>
<tr>
	<td>[Annotation](#annotation)
	 </td>
	<td>An Annotation can be attached to a ROOM class to specify the properties of its AnnotationType</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[Inheritance](#inheritance)
	 </td>
	<td>A class can specify a single super class and inherits elements from the super class hierarchy</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="3" style="white-space: nowrap;">Typecasts:</td>
	<td>[Port](#port)
	 </td>
	<td>A Port is an instance of a ProtocolClass and the interface for an ActorClass</td>
</tr>
<tr>
	<td>[SAP](#sap)
	 </td>
	<td>A Service Access Point is similar to a Port, but uses a LayerConnection for wiring</td>
</tr>
<tr>
	<td>[SPP](#spp)
	 </td>
	<td>A Service Provision Point is the counterpart of a SAP</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[LogicalModel](#logicalmodel)
	 </td>
	<td>The LogicalModel describes the logical structure and behavior of a ROOM application</td>
</tr>
</tbody>
</table>

**Example**:

```room
import etrice.api.types.*

// eventdriven ProtocolClass (asynchronous message passing, bidirectional)
eventdriven ProtocolClass ProtocolClassEvt {
	// ProtocolClass ProtocolClassEvt { // same like above because eventdriven is default 
	incoming {
		// incoming means incoming for a regular port and outgoing for a conjugated port
		Message message1() // message without data
		Message message2(int32) // message with simple data
		Message message3(DMessageData) // message with complex data (DataClass)

	}
	outgoing {
	// outgoing means outgoing for a regular port and incoming for a conjugated port
		Message message1(int32) // incoming and outgoing Messages can have the same name to enable symmetric protocols
	}
}

// DataClass for sending complex data via message
DataClass DMessageData {
	Attribute SomeData: int16
	Attribute SomeMoreData: int32
}

// datadriven ProtocolClass (asynchronous data flow, unidirectional)
datadriven ProtocolClass ProtocolClassData {
	incoming {
		// incoming means incoming for a regular port and outgoing for a conjugated port
		Message value1(int32) // a datadriven message (signal) always needs data
		Message value2(int16) // datadriven message with simple data
		Message value3(DMessageData) // datadriven message with complex data (DataClass)

	}
	// no outgoing messages for datadriven ports allowed 
}
```

---


### RefinedState
A RefinedState refines a State of one of the Actor's base class state machines

A State can be a plain State or a RefinedState.


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[State](#state)
	 </td>
	<td>A State can be a plain State or a RefinedState</td>
</tr>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Uses:</td>
	<td>[Inheritance](#inheritance)
	 </td>
	<td>A class can specify a single super class and inherits elements from the super class hierarchy</td>
</tr>
<tr>
	<td>[StateMachine](#statemachine)
	 </td>
	<td>A StateMachine describes the state based, event driven behavior of an ActorClass</td>
</tr>
</tbody>
</table>



---


### RelayPort
A RelayPort forwards its messages without exposing them to the internal interface of the ActorClass

```room
ActorClass RelayPortExample{
	Interface {
		Port relayPort : PSimpleProtocol
	}
	Structure {
		ActorRef actorRef1 : SimpleActorClass2
		
		// relayPort can be directed to port of an ActorRef
		Binding relayPort and actorRef1.externalPort
	}
	Behavior {
		// relayPort not available !
	}
}
```
![RelayPort](images/300-RelayPort.png)


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[Port](#port)
	 </td>
	<td>A Port is an instance of a ProtocolClass and the interface for an ActorClass</td>
</tr>
</tbody>
</table>



---


### Replication
Replication is mechanism for multi-instantiation for ActorRefs and Ports

ActorRefs and Ports can be instantiated several times under the same name. The notation is similar to arrays in programming languages.

This possibility provides an elegant way of scaling of your system without redundancy.

```room
ActorRef sensor : Sensor 			// one instance
ActorRef sensor[1] : Sensor			// one instance
ActorRef sensorArray[5] : Sensor	// five instances  
```

Replication can also applied to Ports. One use case is to establish a communication with multiple actors through one port interface.
```room
Port service[5] : TimingService 	// five instances
Port service[*] : TimingService		// automatic, as many as needed
```



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Is used by:</td>
	<td>[ActorRef](#actorref)
	 </td>
	<td>An ActorRef is an instance of an ActorClass</td>
</tr>
<tr>
	<td>[Port](#port)
	 </td>
	<td>A Port is an instance of a ProtocolClass and the interface for an ActorClass</td>
</tr>
</tbody>
</table>


---


### SAP
A Service Access Point is similar to a Port, but uses a LayerConnection for wiring


- An actor class can define a Service Provision Point (SPP) to publish a specific service, defined by a protocol class
- An actor class can define a Service Access Point (SAP) if it needs a service, defined by a protocol class
- For a given actor hierarchy, a LayerConnection defines which SAP will be satisfied by (connected to) which SPP



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is of type:</td>
	<td>[ProtocolClass](#protocolclass)
	 </td>
	<td>A ProtocolClass defines messages and is the interface specification for a Port</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is edited by:</td>
	<td>[GraphicalStructureEditor](#graphicalstructureeditor)
	 </td>
	<td>The Structure Editor allows to edit the ActorClass' Structure in a convenient way. It is possible to create and arrange actor references and ports and to create bindings and layer connections.</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is used by:</td>
	<td>[LayerConnection](#layerconnection)
	 : SAPoint</td>
	<td>A LayerConnection associates a SPP to an ActorRef, resulting in an connection of all SAPs on its instance hierarchy</td>
</tr>
</tbody>
</table>


---


### SPP
A Service Provision Point is the counterpart of a SAP

- An actor class can define a Service Provision Point (SPP) to publish a specific service, defined by a protocol class
- An actor class can define a Service Access Point (SAP) if it needs a service, defined by a protocol class
- For a given actor hierarchy, a LayerConnection defines which SAP will be satisfied by (connected to) which SPP


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is of type:</td>
	<td>[ProtocolClass](#protocolclass)
	 </td>
	<td>A ProtocolClass defines messages and is the interface specification for a Port</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is edited by:</td>
	<td>[SPPPropertyDialog](#spppropertydialog)
	 </td>
	<td>A dialog to edit properties of a SPP.</td>
</tr>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Is used by:</td>
	<td>[LayerConnection](#layerconnection)
	 : SPPoint</td>
	<td>A LayerConnection associates a SPP to an ActorRef, resulting in an connection of all SAPs on its instance hierarchy</td>
</tr>
<tr>
	<td>[ServiceImplementation](#serviceimplementation)
	 </td>
	<td>The implementation of an Service Provision Point (SPP)</td>
</tr>
</tbody>
</table>


---


### ServiceImplementation
The implementation of an Service Provision Point (SPP)



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[SPP](#spp)
	 </td>
	<td>A Service Provision Point is the counterpart of a SAP</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
</tbody>
</table>


---


### SimpleState
A State is a node in the state graph representation of the state machine

A State has optional 'entry' and 'exit' codes. The entry code is executed when the state is entered, the exit code is executed
when it is left. In the case of an data driven (also known as polled) state machine, there also is a 'do' action code.
The do code is executed for the active state in each polling cycle.
A state can have a sub state machine. Starting at the top level state machine the states with their optional sub state machines
form a tree which is called a 'hierarchical state machine'.
A state machine always is in exactly one state which can only be a leaf state, i.e. a state which has no sub state machine.


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[State](#state)
	 </td>
	<td>A State can be a plain State or a RefinedState</td>
</tr>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Uses:</td>
	<td>[Inheritance](#inheritance)
	 </td>
	<td>A class can specify a single super class and inherits elements from the super class hierarchy</td>
</tr>
<tr>
	<td>[StateMachine](#statemachine)
	 </td>
	<td>A StateMachine describes the state based, event driven behavior of an ActorClass</td>
</tr>
</tbody>
</table>



---


### State
A State can be a plain State or a RefinedState

A State can be a plain State or a RefinedState.


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[StateGraphNode](#stategraphnode)
	 </td>
	<td>A StateGraphNode is an abstract node of the state graph</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[Inheritance](#inheritance)
	 </td>
	<td>A class can specify a single super class and inherits elements from the super class hierarchy</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Inheriting features:</td>
	<td>[SimpleState](#simplestate)
	 </td>
	<td>A State is a node in the state graph representation of the state machine</td>
</tr>
<tr>
	<td>[RefinedState](#refinedstate)
	 </td>
	<td>A RefinedState refines a State of one of the Actor's base class state machines</td>
</tr>
</tbody>
</table>


---


### StateGraphNode
A StateGraphNode is an abstract node of the state graph

A StateGraphNode can be a State, a TransitionPoint, a ChoicePoint or an InitialPoint.


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[Inheritance](#inheritance)
	 </td>
	<td>A class can specify a single super class and inherits elements from the super class hierarchy</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="3" style="white-space: nowrap;">Inheriting features:</td>
	<td>[State](#state)
	 </td>
	<td>A State can be a plain State or a RefinedState</td>
</tr>
<tr>
	<td>[ChoicePoint](#choicepoint)
	 </td>
	<td>a choice point is the state machine counterpart of a conditional statement</td>
</tr>
<tr>
	<td>[TrPoint](#trpoint)
	 </td>
	<td>a TrPoint can be an EntryPoint, an ExitPoint or a TransitionPoint</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[StateMachine](#statemachine)
	 </td>
	<td>A StateMachine describes the state based, event driven behavior of an ActorClass</td>
</tr>
</tbody>
</table>


---


### StateMachine
A StateMachine describes the state based, event driven behavior of an ActorClass

In ROOM each actor class can implement its behavior using a state machine. Events occurring at the end ports of an actor will
be forwarded to and processed by the state machine. Events possibly trigger state transitions.

ROOM state machines are hierarchical finite state machines. That means that each state in the state graph can contain another state graph.
This is possible to arbitrary depth.

A state graph consists of

* states
* transitions
* transition points
* choice points
* initial point

![PingPongReceiverFSM](images/300-PingPongReceiverFSM.png)



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Contains:</td>
	<td>[StateGraphNode](#stategraphnode)
	 </td>
	<td>A StateGraphNode is an abstract node of the state graph</td>
</tr>
<tr>
	<td>[Transition](#transition)
	 </td>
	<td>A Transition is an edge in the state graph representation of the state machine</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[Inheritance](#inheritance)
	 </td>
	<td>A class can specify a single super class and inherits elements from the super class hierarchy</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is edited by:</td>
	<td>[GraphicalBehaviorEditor](#graphicalbehavioreditor)
	 </td>
	<td>The GraphicalBehaviorEditor allows to edit the ActorClass' StateMachine. It is possible to create (hierarchical) states and transitions to model complex behavior in a convenient way.</td>
</tr>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Is used by:</td>
	<td>[SimpleState](#simplestate)
	 </td>
	<td>A State is a node in the state graph representation of the state machine</td>
</tr>
<tr>
	<td>[RefinedState](#refinedstate)
	 </td>
	<td>A RefinedState refines a State of one of the Actor's base class state machines</td>
</tr>
</tbody>
</table>


---


### SubSystemClass
A SubSystem is the topmost building block of the executable part of an system

It represents a class for an logical node in a distributed system. An instantiation translates to an executable application, that runs on a node or process.
A SubSystemClass is the structural starting point of an ROOM application. Thus it declares the topmost actor instances (ActorRefs).


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="4" style="white-space: nowrap;">Contains:</td>
	<td>[ActorRef](#actorref)
	 </td>
	<td>An ActorRef is an instance of an ActorClass</td>
</tr>
<tr>
	<td>[Binding](#binding)
	 </td>
	<td>A Binding connects two Ports with each other</td>
</tr>
<tr>
	<td>[LayerConnection](#layerconnection)
	 </td>
	<td>A LayerConnection associates a SPP to an ActorRef, resulting in an connection of all SAPs on its instance hierarchy</td>
</tr>
<tr>
	<td>[Annotation](#annotation)
	 </td>
	<td>An Annotation can be attached to a ROOM class to specify the properties of its AnnotationType</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Typecasts:</td>
	<td>[SubSystemRef](#subsystemref)
	 </td>
	<td>A Sub System Reference is an instance of an SubSystemClass</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[LogicalModel](#logicalmodel)
	 </td>
	<td>The LogicalModel describes the logical structure and behavior of a ROOM application</td>
</tr>
</tbody>
</table>


---


### SubSystemRef
A Sub System Reference is an instance of an SubSystemClass

It represent a logical node in the structural view of a distributed system. An instantiation translates to an executable application, that runs on a node or process.
	
To be executable, a SubSystemRef has first to be mapped to a physical node, which defines the executional properties.
A physical node is denoted by a NodeClass and NodeRef in the PhysicalModel. The mapping is defined in the MappingModel.



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is of type:</td>
	<td>[SubSystemClass](#subsystemclass)
	 </td>
	<td>A SubSystem is the topmost building block of the executable part of an system</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[LogicalSystem](#logicalsystem)
	 </td>
	<td>The LogicalSystem is the topmost structural class. It assembles a distributed system by means of sub systems</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is used by:</td>
	<td>[MappingModel](#mappingmodel)
	 </td>
	<td>The MappingModel describes the mapping of elements of the LogicalModel to elements of the PhysicalModel</td>
</tr>
</tbody>
</table>


---


### TrPoint
a TrPoint can be an EntryPoint, an ExitPoint or a TransitionPoint

text


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[StateGraphNode](#stategraphnode)
	 </td>
	<td>A StateGraphNode is an abstract node of the state graph</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="3" style="white-space: nowrap;">Inheriting features:</td>
	<td>[TransitionPoint](#transitionpoint)
	 </td>
	<td>a transition point is the starting point of transitions that trigger for any state of this state machine</td>
</tr>
<tr>
	<td>[EntryPoint](#entrypoint)
	 </td>
	<td>an entry point is an explicit entry point in a sub state machine to which transitions in the parent state graph can connect</td>
</tr>
<tr>
	<td>[ExitPoint](#exitpoint)
	 </td>
	<td>an exit point is an explicit exit point in a sub state machine from which transitions in the parent state graph can start</td>
</tr>
</tbody>
</table>


---


### Transition
A Transition is an edge in the state graph representation of the state machine

A transition connects StateGraphNodes in a state graph. A transition is allowed to connect a state or a transition point with itself.
Transition points can only be targets of transitions originating from the same transition point.
The initial point is the source of exactly one transition. In the textual model it is present only in an implicit way.


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[Inheritance](#inheritance)
	 </td>
	<td>A class can specify a single super class and inherits elements from the super class hierarchy</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="4" style="white-space: nowrap;">Inheriting features:</td>
	<td>[InitialTransition](#initialtransition)
	 </td>
	<td>the initial transition is used to identify the initial state</td>
</tr>
<tr>
	<td>[ContinuationTransition](#continuationtransition)
	 </td>
	<td>the continuation transition is a transition with just an optional action code</td>
</tr>
<tr>
	<td>[CPBranchTransition](#cpbranchtransition)
	 </td>
	<td>a choice point branch transition is an outgoing transition from a choice point and is traversed if its conditions is evaluated to true</td>
</tr>
<tr>
	<td>[TriggeredTransition](#triggeredtransition)
	 </td>
	<td>a triggered transition is used in event driven state machines to trigger state transitions</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[StateMachine](#statemachine)
	 </td>
	<td>A StateMachine describes the state based, event driven behavior of an ActorClass</td>
</tr>
</tbody>
</table>


---


### TransitionPoint
a transition point is the starting point of transitions that trigger for any state of this state machine

text


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[TrPoint](#trpoint)
	 </td>
	<td>a TrPoint can be an EntryPoint, an ExitPoint or a TransitionPoint</td>
</tr>
</tbody>
</table>



---


### TriggeredTransition
a triggered transition is used in event driven state machines to trigger state transitions

text


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is a:</td>
	<td>[Transition](#transition)
	 </td>
	<td>A Transition is an edge in the state graph representation of the state machine</td>
</tr>
</tbody>
</table>



---


## MappingModel
The MappingModel describes the mapping of elements of the LogicalModel to elements of the PhysicalModel

It enables the complete decoupling of the LogicalModel and the PhysicalModel, thus providing a maximum flexibility and reuse for the models.

The model starts with an import part, where you can import .room and .etphys models. They must contain at least one LogicalSystem and one PhysicalSystem.
A Mapping entry puts both in relation, meaning that all sub systems of the LogicalSystem will be distributed to the nodes of the PhysicalSystem.
This is carried out by a SubSystemMapping, that maps a SubSystemRef (logical node) to a NodeRef (physical node).
In the next step, ThreadMappings provide the same action for the logical and physical threads.

```etmap
MappingModel PingPongMapping {
	import PingPong_Model.LogSys
	import GenericPhysicalModel.PhysSys1

	Mapping LogSys -> PhysSys1 {
		SubSystemMapping subSystemRef -> nodeRef1 {
			ThreadMapping defaultThread -> PhysicalThread1
		}
	}

}
```


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="3" style="white-space: nowrap;">Uses:</td>
	<td>[LogicalSystem](#logicalsystem)
	 </td>
	<td>The LogicalSystem is the topmost structural class. It assembles a distributed system by means of sub systems</td>
</tr>
<tr>
	<td>[SubSystemRef](#subsystemref)
	 </td>
	<td>A Sub System Reference is an instance of an SubSystemClass</td>
</tr>
<tr>
	<td>[PhysicalModel](#physicalmodel)
	 </td>
	<td>The PhysicalModel defines the setup of your nodes with their attributes like threads and mode of execution</td>
</tr>
</tbody>
</table>



---


## PhysicalModel
The PhysicalModel defines the setup of your nodes with their attributes like threads and mode of execution

The model describes the physical view of your system:

```etphys
PhysicalSystem PhysSys1 {
	NodeRef nodeRef1 : NodeClass1
	NodeRef nodeRef2 : NodeClass2
}
```

The central element is a NodeClass, that models the executional aspects of a device (node).
At first, it can be associated with a RuntimeClass, which specifies if your device supports multiple threads.
'priomin' and 'priomax' define the range of priorities, that can be assigned to threads.

```etphys
NodeClass NodeClass1 {
	runtime = RuntimeClass1
	priomin = -10
	priomax = 10

	// Thread definitions ...
}

RuntimeClass RuntimeClass1 {
	model = multiThreaded // or singleThreaded
}
```

A thread has to specify the following properties:

- **execmode**: defines the execution type, see more at ExecutionType
	- blocked: message-driven only, thread wakes up if message arrives and is put to sleep after all action is done
	- polled: data-driven only, thread is executed cyclic. The 'interval' property is mandatory in this case.
	- mixed: combines both execution types

- **msgblocksize**: the size in bytes of a message
- **msgpoolsize**:  the amount of messages, that the thread's message queue can store

Note: 'msgblocksize' and 'msgpoolsize' also apply to the polled execution due the internal implementation via message passing.
 The size of the message queue can be calculated as follows: msgpoolsize * msgblocksize bytes 

```etphys
DefaultThread ThreadMessaging {
	execmode = polled
	prio = 0
	stacksize = 1024
	msgblocksize = 32
	msgpoolsize = 10
}

Thread ThreadPolled {
	execmode = polled
	prio = 0
	interval = 100ms
	stacksize = 1024
	msgblocksize = 32
	msgpoolsize = 10
}
```

![Overview of PhysicalModel](images/300-PhysicalModelOverview.png)



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is used by:</td>
	<td>[MappingModel](#mappingmodel)
	 </td>
	<td>The MappingModel describes the mapping of elements of the LogicalModel to elements of the PhysicalModel</td>
</tr>
</tbody>
</table>


---


# ModelEditors
All aspects of the ROOMLanguage can be edited by full-blown textual editors. In addition, graphical editing is provided for the structural and behavioral part of ActorClasses.


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="3" style="white-space: nowrap;">Contains:</td>
	<td>[TextualROOMEditor](#textualroomeditor)
	 </td>
	<td>Textual model editor</td>
</tr>
<tr>
	<td>[GraphicalStructureEditor](#graphicalstructureeditor)
	 </td>
	<td>The Structure Editor allows to edit the ActorClass' Structure in a convenient way. It is possible to create and arrange actor references and ports and to create bindings and layer connections.</td>
</tr>
<tr>
	<td>[GraphicalBehaviorEditor](#graphicalbehavioreditor)
	 </td>
	<td>The GraphicalBehaviorEditor allows to edit the ActorClass' StateMachine. It is possible to create (hierarchical) states and transitions to model complex behavior in a convenient way.</td>
</tr>
</tbody>
</table>

## GraphicalBehaviorEditor
The GraphicalBehaviorEditor allows to edit the ActorClass' StateMachine. It is possible to create (hierarchical) states and transitions to model complex behavior in a convenient way.

![GraphicalBehaviorEditor](images/300-GraphicalBehaviorEditor.png)


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Edits:</td>
	<td>[StateMachine](#statemachine)
	 </td>
	<td>A StateMachine describes the state based, event driven behavior of an ActorClass</td>
</tr>
</tbody>
</table>



---


## GraphicalStructureEditor
The Structure Editor allows to edit the ActorClass' Structure in a convenient way. It is possible to create and arrange actor references and ports and to create bindings and layer connections.

![GraphicalStructureEditor](images/300-GraphicalStructureEditor.png)


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="4" style="white-space: nowrap;">Contains:</td>
	<td>[StructureEditorPalette](#structureeditorpalette)
	 </td>
	<td>The palette creates central structural elements of an ActorClass.</td>
</tr>
<tr>
	<td>[ActorRefPropertyDialog](#actorrefpropertydialog)
	 </td>
	<td>A dialog to edit properties of an ActorRef.</td>
</tr>
<tr>
	<td>[PortPropertyDialog](#portpropertydialog)
	 </td>
	<td>A dialog to edit properties of an Port.</td>
</tr>
<tr>
	<td>[SPPPropertyDialog](#spppropertydialog)
	 </td>
	<td>A dialog to edit properties of a SPP.</td>
</tr>
<tr>
	<td rowspan="6" style="white-space: nowrap;">Edits:</td>
	<td>[ActorClass](#actorclass)
	 </td>
	<td>An actor is the basic structural building block for building systems with ROOM</td>
</tr>
<tr>
	<td>[ActorRef](#actorref)
	 </td>
	<td>An ActorRef is an instance of an ActorClass</td>
</tr>
<tr>
	<td>[Port](#port)
	 </td>
	<td>A Port is an instance of a ProtocolClass and the interface for an ActorClass</td>
</tr>
<tr>
	<td>[SAP](#sap)
	 </td>
	<td>A Service Access Point is similar to a Port, but uses a LayerConnection for wiring</td>
</tr>
<tr>
	<td>[Binding](#binding)
	 </td>
	<td>A Binding connects two Ports with each other</td>
</tr>
<tr>
	<td>[LayerConnection](#layerconnection)
	 </td>
	<td>A LayerConnection associates a SPP to an ActorRef, resulting in an connection of all SAPs on its instance hierarchy</td>
</tr>
</tbody>
</table>



---


### ActorRefPropertyDialog
A dialog to edit properties of an ActorRef.

The dialog is used to edit an existing ActorRef of an ActorClass. It is also shown when creating a new one.

![ActorRefDialog](images/300-ActorRefDialog.png)



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Edits:</td>
	<td>[ActorRef](#actorref)
	 </td>
	<td>An ActorRef is an instance of an ActorClass</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[GraphicalStructureEditor](#graphicalstructureeditor)
	 </td>
	<td>The Structure Editor allows to edit the ActorClass' Structure in a convenient way. It is possible to create and arrange actor references and ports and to create bindings and layer connections.</td>
</tr>
</tbody>
</table>


---


### PortPropertyDialog
A dialog to edit properties of an Port.

The dialog is used to edit an existing Port of an ActorClass. It is also shown when creating a new one.

![PortDialog](images/300-PortDialog.png)



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Edits:</td>
	<td>[Port](#port)
	 </td>
	<td>A Port is an instance of a ProtocolClass and the interface for an ActorClass</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[GraphicalStructureEditor](#graphicalstructureeditor)
	 </td>
	<td>The Structure Editor allows to edit the ActorClass' Structure in a convenient way. It is possible to create and arrange actor references and ports and to create bindings and layer connections.</td>
</tr>
</tbody>
</table>


---


### SPPPropertyDialog
A dialog to edit properties of a SPP.

The dialog is used to edit an existing SPP of an ActorClass. It is also shown when creating a new one.

![SPPDialog](images/300-SPPDialog.png)



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Edits:</td>
	<td>[SPP](#spp)
	 </td>
	<td>A Service Provision Point is the counterpart of a SAP</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[GraphicalStructureEditor](#graphicalstructureeditor)
	 </td>
	<td>The Structure Editor allows to edit the ActorClass' Structure in a convenient way. It is possible to create and arrange actor references and ports and to create bindings and layer connections.</td>
</tr>
</tbody>
</table>


---


### StructureEditorPalette
The palette creates central structural elements of an ActorClass.

Selecting an entry from the palette and clicking into the diagram, creates the element at the current position.

![StructurePalette](images/300-StructurePalette.png)




<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[GraphicalStructureEditor](#graphicalstructureeditor)
	 </td>
	<td>The Structure Editor allows to edit the ActorClass' Structure in a convenient way. It is possible to create and arrange actor references and ports and to create bindings and layer connections.</td>
</tr>
</tbody>
</table>


---


## TextualROOMEditor
Textual model editor

![TextualROOMEditor](images/300-TextualROOMEditor.png)


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Contains:</td>
	<td>[OutlineView](#outlineview)
	 </td>
	<td>Displays an overview of all elements in the textual editor.</td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Edits:</td>
	<td>[ROOMLanguage](#roomlanguage)
	 </td>
	<td>The Real Time Object Oriented Modeling (ROOM)</td>
</tr>
</tbody>
</table>



---


### OutlineView
Displays an overview of all elements in the textual editor.

Shows the structure of the current opened model in the textual editor. Select the 'Link with Editor' option to synchronize the selection of elements between editor and outline view. This enables a convenient navigation.

![OutlineView](images/300-OutlineView.png)




<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is contained in:</td>
	<td>[TextualROOMEditor](#textualroomeditor)
	 </td>
	<td>Textual model editor</td>
</tr>
</tbody>
</table>


---


# CodeGenerators


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="3" style="white-space: nowrap;">Contains:</td>
	<td>[CCodeGenerator](#ccodegenerator)
	 </td>
	<td></td>
</tr>
<tr>
	<td>[JavaCodeGenerator](#javacodegenerator)
	 </td>
	<td></td>
</tr>
<tr>
	<td>[CPPCodeGenerator](#cppcodegenerator)
	 </td>
	<td></td>
</tr>
</tbody>
</table>

## CCodeGenerator



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Contains:</td>
	<td>[GenerationOptions](#generationoptions)
	 </td>
	<td>Mechanism to adjust the generation.</td>
</tr>
<tr>
	<td>[MSCLogging](#msclogging)
	 </td>
	<td>Runtime logger for event-driven Messages, represented as a Message Sequence Chart.</td>
</tr>
</tbody>
</table>



---


## CPPCodeGenerator






---


## GenerationOptions
Mechanism to adjust the generation.

Options for generation are configured in the launch configuration or in case of standalone generation via command line.
A list of available options:

- generate as library
- generate documentation
- generate instrumentation for MSC generation
- generate instrumentation for data logging
- override output directories
- debug options



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Is contained in:</td>
	<td>[CCodeGenerator](#ccodegenerator)
	 </td>
	<td></td>
</tr>
<tr>
	<td>[JavaCodeGenerator](#javacodegenerator)
	 </td>
	<td></td>
</tr>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Is used by:</td>
	<td>[MSCLogging](#msclogging)
	 </td>
	<td>Runtime logger for event-driven Messages, represented as a Message Sequence Chart.</td>
</tr>
</tbody>
</table>


---


## JavaCodeGenerator



<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Contains:</td>
	<td>[GenerationOptions](#generationoptions)
	 </td>
	<td>Mechanism to adjust the generation.</td>
</tr>
<tr>
	<td>[MSCLogging](#msclogging)
	 </td>
	<td>Runtime logger for event-driven Messages, represented as a Message Sequence Chart.</td>
</tr>
</tbody>
</table>



---


## MSCLogging
Runtime logger for event-driven Messages, represented as a Message Sequence Chart.

The MSCLogging is activated by default, but can be set manually in the [GenerationOptions][]. The output file is created upon regular termination of the application. The resulting file can be found in the logging directory and has the name *msc.seq*, which can be open with the free open source tool [Trace2UML](http://trace2uml.stage.tigris.org/).

![MSCLogging](images/300-MSCLogging.png)


<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Features</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="1" style="white-space: nowrap;">Uses:</td>
	<td>[GenerationOptions](#generationoptions)
	 </td>
	<td>Mechanism to adjust the generation.</td>
</tr>
</tbody>
</table>

<table style="vertical-align: middle;" class="table">
<thead>
<tr>
	<th colspan="3">Feature Usage</th>
</tr>
</thead>
<tbody>
<tr>
	<td rowspan="2" style="white-space: nowrap;">Is contained in:</td>
	<td>[CCodeGenerator](#ccodegenerator)
	 </td>
	<td></td>
</tr>
<tr>
	<td>[JavaCodeGenerator](#javacodegenerator)
	 </td>
	<td></td>
</tr>
</tbody>
</table>


---



[TextualROOMEditor]: #textualroomeditor
[OutlineView]: #outlineview
[GraphicalBehaviorEditor]: #graphicalbehavioreditor
[GraphicalStructureEditor]: #graphicalstructureeditor
[StructureEditorPalette]: #structureeditorpalette
[ActorRefPropertyDialog]: #actorrefpropertydialog
[PortPropertyDialog]: #portpropertydialog
[SPPPropertyDialog]: #spppropertydialog
[CCodeGenerator]: #ccodegenerator
[JavaCodeGenerator]: #javacodegenerator
[CPPCodeGenerator]: #cppcodegenerator
[GenerationOptions]: #generationoptions
[MSCLogging]: #msclogging
[AnnotationType]: #annotationtype
[Annotation]: #annotation
[Inheritance]: #inheritance
[PhysicalModel]: #physicalmodel
[MappingModel]: #mappingmodel
[ConfigModel]: #configmodel
[LogicalModel]: #logicalmodel
[LogicalSystem]: #logicalsystem
[ActorClass]: #actorclass
[SubSystemClass]: #subsystemclass
[StateMachine]: #statemachine
[StateGraphNode]: #stategraphnode
[State]: #state
[SimpleState]: #simplestate
[RefinedState]: #refinedstate
[ChoicePoint]: #choicepoint
[TrPoint]: #trpoint
[TransitionPoint]: #transitionpoint
[EntryPoint]: #entrypoint
[ExitPoint]: #exitpoint
[Transition]: #transition
[InitialTransition]: #initialtransition
[GuardedTransition]: #guardedtransition
[ContinuationTransition]: #continuationtransition
[CPBranchTransition]: #cpbranchtransition
[TriggeredTransition]: #triggeredtransition
[SubSystemRef]: #subsystemref
[Replication]: #replication
[ActorRef]: #actorref
[Binding]: #binding
[LayerConnection]: #layerconnection
[ExecutionType]: #executiontype
[CommunicationType]: #communicationtype
[ProtocolClass]: #protocolclass
[DataType]: #datatype
[PrimitiveType]: #primitivetype
[Enumeration]: #enumeration
[DataClass]: #dataclass
[ExternalType]: #externaltype
[Attribute]: #attribute
[Operation]: #operation
[Port]: #port
[RelayPort]: #relayport
[ExternalEndPort]: #externalendport
[InternalEndPort]: #internalendport
[SAP]: #sap
[ServiceImplementation]: #serviceimplementation
[SPP]: #spp

Back to the top