/******************************************************************************* * Copyright (c) 2007, 2010 Wind River Systems, Inc. and others. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * and Eclipse Distribution License v1.0 which accompany this distribution. * The Eclipse Public License is available at * http://www.eclipse.org/legal/epl-v10.html * and the Eclipse Distribution License is available at * http://www.eclipse.org/org/documents/edl-v10.php. * You may elect to redistribute this code under either of these licenses. * * Contributors: * Wind River Systems - initial API and implementation *******************************************************************************/ /* * This module handles process/thread OS contexts and their state machine. */ #include #if defined(__APPLE__) #if ENABLE_DebugContext && !ENABLE_ContextProxy #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define WORD_SIZE 4 typedef struct ContextExtensionDarwin { pid_t pid; ContextAttachCallBack * attach_callback; void * attach_data; int ptrace_flags; int ptrace_event; int syscall_enter; int syscall_exit; int syscall_id; ContextAddress syscall_pc; ContextAddress loader_state; int end_of_step; REG_SET * regs; /* copy of context registers, updated when context stops */ ErrorReport * regs_error; /* if not NULL, 'regs' is invalid */ int regs_dirty; /* if not 0, 'regs' is modified and needs to be saved before context is continued */ int pending_step; } ContextExtensionDarwin; static size_t context_extension_offset = 0; #define EXT(ctx) ((ContextExtensionDarwin *)((char *)(ctx) + context_extension_offset)) #include static LINK pending_list; static MemoryErrorInfo mem_err_info; const char * context_suspend_reason(Context * ctx) { static char reason[128]; if (EXT(ctx)->end_of_step) return REASON_STEP; if (EXT(ctx)->syscall_enter) return "System Call"; if (EXT(ctx)->syscall_exit) return "System Return"; if (ctx->signal == SIGSTOP || ctx->signal == SIGTRAP) return REASON_USER_REQUEST; snprintf(reason, sizeof(reason), "Signal %d", ctx->signal); return reason; } int context_attach_self(void) { if (ptrace(PT_TRACE_ME, 0, 0, 0) < 0) { int err = errno; trace(LOG_ALWAYS, "error: ptrace(PT_TRACE_ME) failed: pid %d, error %d %s", getpid(), err, errno_to_str(err)); errno = err; return -1; } return 0; } int context_attach(pid_t pid, ContextAttachCallBack * done, void * data, int mode) { Context * ctx = NULL; assert(done != NULL); trace(LOG_CONTEXT, "context: attaching pid %d", pid); if ((mode & CONTEXT_ATTACH_SELF) == 0 && ptrace(PT_ATTACH, pid, 0, 0) < 0) { int err = errno; trace(LOG_ALWAYS, "error: ptrace(PT_ATTACH) failed: pid %d, error %d %s", pid, err, errno_to_str(err)); errno = err; return -1; } add_waitpid_process(pid); ctx = create_context(pid2id(pid, 0)); ctx->mem = ctx; ctx->mem_access |= MEM_ACCESS_INSTRUCTION; ctx->mem_access |= MEM_ACCESS_DATA; ctx->mem_access |= MEM_ACCESS_USER; ctx->big_endian = big_endian_host(); EXT(ctx)->pid = pid; EXT(ctx)->attach_callback = done; EXT(ctx)->attach_data = data; list_add_first(&ctx->ctxl, &pending_list); /* TODO: context_attach works only for main task in a process */ return 0; } int context_has_state(Context * ctx) { return ctx != NULL && ctx->parent != NULL; } int context_stop(Context * ctx) { trace(LOG_CONTEXT, "context:%s suspending ctx %#lx, id %s", ctx->pending_intercept ? "" : " temporary", ctx, ctx->id); assert(is_dispatch_thread()); assert(!ctx->exited); assert(!ctx->stopped); assert(!EXT(ctx)->regs_dirty); if (kill(EXT(ctx)->pid, SIGSTOP) < 0) { int err = errno; if (err == ESRCH) { ctx->exiting = 1; return 0; } trace(LOG_ALWAYS, "error: tkill(SIGSTOP) failed: ctx %#lx, id %s, error %d %s", ctx, ctx->id, err, errno_to_str(err)); errno = err; return -1; } return 0; } static int syscall_never_returns(Context * ctx) { if (EXT(ctx)->syscall_enter) { switch (EXT(ctx)->syscall_id) { case SYS_sigreturn: return 1; } } return 0; } int context_continue(Context * ctx) { int signal = 0; assert(is_dispatch_thread()); assert(ctx->stopped); assert(!ctx->exited); assert(!ctx->pending_intercept); assert(!EXT(ctx)->pending_step); if (skip_breakpoint(ctx, 0)) return 0; if (!EXT(ctx)->syscall_enter) { while (ctx->pending_signals != 0) { while ((ctx->pending_signals & (1 << signal)) == 0) signal++; if (ctx->sig_dont_pass & (1 << signal)) { ctx->pending_signals &= ~(1 << signal); signal = 0; } else { break; } } assert(signal != SIGSTOP); assert(signal != SIGTRAP); } trace(LOG_CONTEXT, "context: resuming ctx %#lx, id %s, with signal %d", ctx, ctx->id, signal); #if defined(__i386__) if (EXT(ctx)->regs->__eflags & 0x100) { EXT(ctx)->regs->__eflags &= ~0x100; EXT(ctx)->regs_dirty = 1; } #elif defined(__x86_64__) if (EXT(ctx)->regs->__rflags & 0x100) { EXT(ctx)->regs->__rflags &= ~0x100; EXT(ctx)->regs_dirty = 1; } #endif if (EXT(ctx)->regs_dirty) { unsigned int state_count; if (thread_set_state(EXT(ctx)->pid, x86_THREAD_STATE32, EXT(ctx)->regs, &state_count) != KERN_SUCCESS) { int err = errno; trace(LOG_ALWAYS, "error: thread_set_state failed: ctx %#lx, id %s, error %d %s", ctx, ctx->id, err, errno_to_str(err)); errno = err; return -1; } EXT(ctx)->regs_dirty = 0; } if (ptrace(PT_CONTINUE, EXT(ctx)->pid, 0, signal) < 0) { int err = errno; if (err == ESRCH) { send_context_started_event(ctx); return 0; } trace(LOG_ALWAYS, "error: ptrace(PT_CONTINUE, ...) failed: ctx %#lx, id %s, error %d %s", ctx, ctx->id, err, errno_to_str(err)); errno = err; return -1; } ctx->pending_signals &= ~(1 << signal); if (syscall_never_returns(ctx)) { EXT(ctx)->syscall_enter = 0; EXT(ctx)->syscall_exit = 0; EXT(ctx)->syscall_id = 0; } send_context_started_event(ctx); return 0; } int context_single_step(Context * ctx) { assert(is_dispatch_thread()); assert(context_has_state(ctx)); assert(ctx->stopped); assert(!ctx->exited); assert(!EXT(ctx)->pending_step); if (skip_breakpoint(ctx, 1)) return 0; if (syscall_never_returns(ctx)) return context_continue(ctx); trace(LOG_CONTEXT, "context: single step ctx %#lx, id %S", ctx, ctx->id); if (EXT(ctx)->regs_dirty) { unsigned int state_count; if (thread_set_state(EXT(ctx)->pid, x86_THREAD_STATE32, EXT(ctx)->regs, &state_count) != KERN_SUCCESS) { int err = errno; trace(LOG_ALWAYS, "error: thread_set_state failed: ctx %#lx, id %s, error %d %s", ctx, ctx->id, err, errno_to_str(err)); errno = err; return -1; } EXT(ctx)->regs_dirty = 0; } if (ptrace(PT_STEP, EXT(ctx)->pid, 0, 0) < 0) { int err = errno; if (err == ESRCH) { EXT(ctx)->pending_step = 1; send_context_started_event(ctx); return 0; } trace(LOG_ALWAYS, "error: ptrace(PT_STEP, ...) failed: ctx %#lx, id %s, error %d %s", ctx, ctx->id, err, errno_to_str(err)); errno = err; return -1; } EXT(ctx)->pending_step = 1; send_context_started_event(ctx); return 0; } int context_resume(Context * ctx, int mode, ContextAddress range_start, ContextAddress range_end) { switch (mode) { case RM_RESUME: return context_continue(ctx); case RM_STEP_INTO: return context_single_step(ctx); case RM_TERMINATE: ctx->pending_signals |= 1 << SIGKILL; return context_continue(ctx); } errno = ERR_UNSUPPORTED; return -1; } int context_can_resume(Context * ctx, int mode) { switch (mode) { case RM_RESUME: return 1; case RM_STEP_INTO: case RM_TERMINATE: return context_has_state(ctx); } return 0; } int context_write_mem(Context * ctx, ContextAddress address, void * buf, size_t size) { /* ContextAddress word_addr; assert(is_dispatch_thread()); assert(!ctx->exited); trace(LOG_CONTEXT, "context: write memory ctx %#lx, id %s, address %#lx, size %zu", ctx, ctx->id, address, size); assert(WORD_SIZE == sizeof(unsigned)); check_breakpoints_on_memory_write(ctx, address, buf, size); for (word_addr = address & ~(WORD_SIZE - 1); word_addr < address + size; word_addr += WORD_SIZE) { unsigned word = 0; if (word_addr < address || word_addr + WORD_SIZE > address + size) { int i; errno = 0; word = ptrace(PT_PEEKDATA, EXT(ctx)->pid, word_addr, 0); if (errno != 0) { int err = errno; trace(LOG_CONTEXT, "error: ptrace(PT_PEEKDATA, ...) failed: ctx %#lx, id %s, error %d %s", ctx, ctx->id, err, errno_to_str(err)); errno = err; return -1; } for (i = 0; i < WORD_SIZE; i++) { if (word_addr + i >= address && word_addr + i < address + size) { ((char *)&word)[i] = ((char *)buf)[word_addr + i - address]; } } } else { word = *(unsigned *)((char *)buf + (word_addr - address)); } if (ptrace(PT_POKEDATA, EXT(ctx)->pid, word_addr, word) < 0) { int err = errno; trace(LOG_ALWAYS, "error: ptrace(PT_POKEDATA, ...) failed: ctx %#lx, id %s, error %d %s", ctx, ctx->id, err, errno_to_str(err)); errno = err; return -1; } } */ return 0; } int context_read_mem(Context * ctx, ContextAddress address, void * buf, size_t size) { /* ContextAddress word_addr; assert(is_dispatch_thread()); assert(!ctx->exited); trace(LOG_CONTEXT, "context: read memory ctx %#lx, id %s, address %#lx, size %zu", ctx, ctx->id, address, size); assert(WORD_SIZE == sizeof(unsigned)); for (word_addr = address & ~(WORD_SIZE - 1); word_addr < address + size; word_addr += WORD_SIZE) { unsigned word = 0; errno = 0; word = ptrace(PT_PEEKDATA, EXT(ctx)->pid, word_addr, 0); if (errno != 0) { int err = errno; trace(LOG_CONTEXT, "error: ptrace(PT_PEEKDATA, ...) failed: ctx %#lx, id %s, error %d %s", ctx, ctx->id, err, errno_to_str(err)); errno = err; return -1; } if (word_addr < address || word_addr + WORD_SIZE > address + size) { int i; for (i = 0; i < WORD_SIZE; i++) { if (word_addr + i >= address && word_addr + i < address + size) { ((char *)buf)[word_addr + i - address] = ((char *)&word)[i]; } } } else { *(unsigned *)((char *)buf + (word_addr - address)) = word; } } check_breakpoints_on_memory_read(ctx, address, buf, size); */ return 0; } #if ENABLE_ExtendedMemoryErrorReports int context_get_mem_error_info(MemoryErrorInfo * info) { if (mem_err_info.error == 0) { set_errno(ERR_OTHER, "Extended memory error info not available"); return -1; } *info = mem_err_info; return 0; } #endif int context_write_reg(Context * ctx, RegisterDefinition * def, unsigned offs, unsigned size, void * buf) { ContextExtensionDarwin * ext = EXT(ctx); assert(is_dispatch_thread()); assert(context_has_state(ctx)); assert(ctx->stopped); assert(!ctx->exited); assert(offs + size <= def->size); if (ext->regs_error) { set_error_report_errno(ext->regs_error); return -1; } memcpy((uint8_t *)ext->regs + def->offset + offs, buf, size); ext->regs_dirty = 1; return 0; } int context_read_reg(Context * ctx, RegisterDefinition * def, unsigned offs, unsigned size, void * buf) { ContextExtensionDarwin * ext = EXT(ctx); assert(is_dispatch_thread()); assert(context_has_state(ctx)); assert(ctx->stopped); assert(!ctx->exited); assert(offs + size <= def->size); if (ext->regs_error) { set_error_report_errno(ext->regs_error); return -1; } memcpy(buf, (uint8_t *)ext->regs + def->offset + offs, size); return 0; } unsigned context_word_size(Context * ctx) { return sizeof(void *); } int context_get_canonical_addr(Context * ctx, ContextAddress addr, Context ** canonical_ctx, ContextAddress * canonical_addr, ContextAddress * block_addr, ContextAddress * block_size) { /* Direct mapping, page size is irrelevant */ ContextAddress page_size = 0x100000; assert(is_dispatch_thread()); *canonical_ctx = ctx->mem; if (canonical_addr != NULL) *canonical_addr = addr; if (block_addr != NULL) *block_addr = addr & ~(page_size - 1); if (block_size != NULL) *block_size = page_size; return 0; } Context * context_get_group(Context * ctx, int group) { static Context * cpu_group = NULL; switch (group) { case CONTEXT_GROUP_INTERCEPT: return ctx; case CONTEXT_GROUP_CPU: if (cpu_group == NULL) cpu_group = create_context("CPU"); return cpu_group; } return ctx->mem; } int context_get_supported_bp_access_types(Context * ctx) { return 0; } int context_plant_breakpoint(ContextBreakpoint * bp) { errno = ERR_UNSUPPORTED; return -1; } int context_unplant_breakpoint(ContextBreakpoint * bp) { errno = ERR_UNSUPPORTED; return -1; } int context_get_memory_map(Context * ctx, MemoryMap * map) { ctx = ctx->mem; assert(!ctx->exited); return 0; } static Context * find_pending(pid_t pid) { LINK * l = pending_list.next; while (l != &pending_list) { Context * c = ctxl2ctxp(l); if (EXT(c)->pid == pid) { list_remove(&c->ctxl); return c; } l = l->next; } return NULL; } static void event_pid_exited(pid_t pid, int status, int signal) { Context * ctx; ctx = context_find_from_pid(pid, 1); if (ctx == NULL) { ctx = find_pending(pid); if (ctx == NULL) { trace(LOG_EVENTS, "event: ctx not found, pid %d, exit status %d, term signal %d", pid, status, signal); } else { assert(ctx->ref_count == 0); if (EXT(ctx)->attach_callback != NULL) { if (status == 0) status = EINVAL; EXT(ctx)->attach_callback(status, ctx, EXT(ctx)->attach_data); } assert(list_is_empty(&ctx->children)); assert(ctx->parent == NULL); ctx->exited = 1; ctx->ref_count = 1; context_unlock(ctx); } } else { /* Note: ctx->exiting should be 1 here. However, PTRACE_EVENT_EXIT can be lost by PTRACE because of racing * between PTRACE_CONT (or PTRACE_SYSCALL) and SIGTRAP/PTRACE_EVENT_EXIT. So, ctx->exiting can be 0. */ if (EXT(ctx->parent)->pid == pid) ctx = ctx->parent; assert(EXT(ctx)->attach_callback == NULL); if (ctx->exited) { trace(LOG_EVENTS, "event: ctx %#lx, pid %d, exit status %d unexpected, stopped %d, exited %d", ctx, pid, status, ctx->stopped, ctx->exited); } else { trace(LOG_EVENTS, "event: ctx %#lx, pid %d, exit status %d, term signal %d", ctx, pid, status, signal); ctx->exiting = 1; if (ctx->stopped) send_context_started_event(ctx); if (!list_is_empty(&ctx->children)) { LINK * l = ctx->children.next; while (l != &ctx->children) { Context * c = cldl2ctxp(l); l = l->next; assert(c->parent == ctx); if (!c->exited) { c->exiting = 1; if (c->stopped) send_context_started_event(c); release_error_report(EXT(c)->regs_error); loc_free(EXT(c)->regs); EXT(c)->regs_error = NULL; EXT(c)->regs = NULL; send_context_exited_event(c); } } } release_error_report(EXT(ctx)->regs_error); loc_free(EXT(ctx)->regs); EXT(ctx)->regs_error = NULL; EXT(ctx)->regs = NULL; send_context_exited_event(ctx); } } } static void event_pid_stopped(pid_t pid, int signal, int event, int syscall) { int stopped_by_exception = 0; unsigned long msg = 0; Context * ctx = NULL; Context * ctx2 = NULL; trace(LOG_EVENTS, "event: pid %d stopped, signal %d", pid, signal); ctx = context_find_from_pid(pid, 1); if (ctx == NULL) { ctx = find_pending(pid); if (ctx != NULL) { Context * prs = ctx; assert(prs->ref_count == 0); ctx = create_context(pid2id(pid, pid)); EXT(ctx)->pid = pid; EXT(ctx)->regs = (REG_SET *)loc_alloc(sizeof(REG_SET)); ctx->pending_intercept = 1; ctx->mem = prs; ctx->parent = prs; ctx->big_endian = prs->big_endian; prs->ref_count++; list_add_last(&ctx->cldl, &prs->children); link_context(prs); link_context(ctx); send_context_created_event(prs); send_context_created_event(ctx); if (EXT(prs)->attach_callback) { EXT(prs)->attach_callback(0, prs, EXT(prs)->attach_data); EXT(prs)->attach_callback = NULL; EXT(prs)->attach_data = NULL; } } } if (ctx == NULL) return; assert(!ctx->exited); assert(!EXT(ctx)->attach_callback); if (signal != SIGSTOP && signal != SIGTRAP) { assert(signal < 32); ctx->pending_signals |= 1 << signal; if ((ctx->sig_dont_stop & (1 << signal)) == 0) { ctx->pending_intercept = 1; stopped_by_exception = 1; } } if (ctx->stopped) { send_context_changed_event(ctx); } else { thread_state_t state; unsigned int state_count; ContextAddress pc0 = 0; ContextAddress pc1 = 0; assert(!EXT(ctx)->regs_dirty); EXT(ctx)->end_of_step = 0; EXT(ctx)->ptrace_event = event; ctx->signal = signal; ctx->stopped_by_bp = 0; ctx->stopped_by_exception = stopped_by_exception; ctx->stopped = 1; if (EXT(ctx)->regs_error) { release_error_report(EXT(ctx)->regs_error); EXT(ctx)->regs_error = NULL; } else { pc0 = get_regs_PC(ctx); } if (thread_get_state(EXT(ctx)->pid, x86_THREAD_STATE32, EXT(ctx)->regs, &state_count) != KERN_SUCCESS) { assert(errno != 0); EXT(ctx)->regs_error = get_error_report(errno); trace(LOG_ALWAYS, "error: thread_get_state failed; id %s, error %d %s", ctx->id, errno, errno_to_str(errno)); } else { pc1 = get_regs_PC(ctx); } if (!EXT(ctx)->syscall_enter || EXT(ctx)->regs_error || pc0 != pc1) { EXT(ctx)->syscall_enter = 0; EXT(ctx)->syscall_exit = 0; EXT(ctx)->syscall_id = 0; EXT(ctx)->syscall_pc = 0; } trace(LOG_EVENTS, "event: pid %d stopped at PC = %#lx", pid, pc1); if (signal == SIGTRAP && event == 0 && !syscall) { size_t break_size = 0; get_break_instruction(ctx, &break_size); ctx->stopped_by_bp = !EXT(ctx)->regs_error && is_breakpoint_address(ctx, pc1 - break_size); EXT(ctx)->end_of_step = !ctx->stopped_by_bp && EXT(ctx)->pending_step; if (ctx->stopped_by_bp) set_regs_PC(ctx, pc1 - break_size); } EXT(ctx)->pending_step = 0; send_context_stopped_event(ctx); } } static void waitpid_listener(int pid, int exited, int exit_code, int signal, int event_code, int syscall, void * args) { if (exited) { event_pid_exited(pid, exit_code, signal); } else { event_pid_stopped(pid, signal, event_code, syscall); } } void init_contexts_sys_dep(void) { list_init(&pending_list); context_extension_offset = context_extension(sizeof(ContextExtensionDarwin)); add_waitpid_listener(waitpid_listener, NULL); ini_context_pid_hash(); } #endif /* if ENABLE_DebugContext */ #endif /* __APPLE__ */