Skip to main content
aboutsummaryrefslogtreecommitdiffstats
blob: 4773e3b399669b1cbd93cfa89ccce267a5293109 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
/*******************************************************************************
 * Copyright (c) 2004, 2005 IBM Corporation and others.
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v1.0
 * which accompanies this distribution, and is available at
 * http://www.eclipse.org/legal/epl-v10.html
 *
 * Contributors:
 *     IBM Corporation - initial API and implementation
 *******************************************************************************/
package org.eclipse.jface.viewers.deferred;

import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;

import org.eclipse.core.runtime.Assert;

/**
 * This object maintains a collection of elements, sorted by a comparator
 * given in the constructor. The collection is lazily sorted, allowing 
 * more efficient runtimes for most methods. There are several methods on this
 * object that allow objects to be queried by their position in the sorted
 * collection.
 * 
 * <p>
 * This is a modified binary search tree. Each subtree has a value, a left and right subtree, 
 * a count of the number of children, and a set of unsorted children. 
 * Insertion happens lazily. When a new node N is inserted into a subtree T, it is initially 
 * added to the set of unsorted children for T without actually comparing it with the value for T. 
 * </p>
 * <p>
 * The unsorted children will remain in the unsorted set until some subsequent operation requires
 * us to know the exact set of elements in one of the subtrees. At that time, we partition
 * T by comparing all of its unsorted children with T's value and moving them into the left 
 * or right subtrees.
 * </p>
 * 
 * @since 3.1
 */
public class LazySortedCollection {
    private final int MIN_CAPACITY = 8;
    private Object[] contents = new Object[MIN_CAPACITY];
    private int[] leftSubTree = new int[MIN_CAPACITY];
    private int[] rightSubTree = new int[MIN_CAPACITY];
    private int[] nextUnsorted = new int[MIN_CAPACITY];
    private int[] treeSize = new int[MIN_CAPACITY];
    private int[] parentTree = new int[MIN_CAPACITY];
    private int root = -1;
    private int lastNode = 0;
    private int firstUnusedNode = -1;
    
    private static final float loadFactor = 0.75f;
    
    private IntHashMap objectIndices;
    private Comparator comparator;
    private static int counter = 0;
    
    /**
     * Disables randomization and enables additional runtime error checking.
     * Severely degrades performance if set to true. Intended for use in test 
     * suites only.
     */
    public boolean enableDebug = false;
    
    // This object is inserted as the value into any node scheduled for lazy removal
    private Object lazyRemovalFlag = new Object() {
        public String toString() {
            return "Lazy removal flag";  //$NON-NLS-1$
        }
    };
    
    private final static int DIR_LEFT = 0;
    private final static int DIR_RIGHT = 1;
    private final static int DIR_UNSORTED = 2;
    
    // Direction constants indicating root nodes
    private final static int DIR_ROOT = 3;
    private final static int DIR_UNUSED = 4;
       
    private final class Edge {
        private int startNode;
        private int direction;
        
        private Edge() {
            startNode = -1;
            direction = -1;
        }
        
        private Edge(int node, int dir) {
            startNode = node;
            direction = dir;
        }
        
        private int getStart() {
            return startNode;
        }
        
        private int getTarget() {
            if (startNode == -1) {
                if (direction == DIR_UNSORTED) {
                    return firstUnusedNode;
                } else if (direction == DIR_ROOT) {
                    return root;
                }
                return -1;
            }
            
            if (direction == DIR_LEFT) {
                return leftSubTree[startNode];
            }
            if (direction == DIR_RIGHT) {
                return rightSubTree[startNode];
            }
            return nextUnsorted[startNode];
        }
        
        private boolean isNull() {
            return getTarget() == -1;
        }
     
        /**
         * Redirects this edge to a new node
         * @param newNode
         * @since 3.1
         */
        private void setTarget(int newNode) {            
            if (direction == DIR_LEFT) {
    	        leftSubTree[startNode] = newNode;
            } else if (direction == DIR_RIGHT) {
                rightSubTree[startNode] = newNode;
            } else if (direction == DIR_UNSORTED) {
                nextUnsorted[startNode] = newNode;
            } else if (direction == DIR_ROOT) {
                root = newNode;
            } else if (direction == DIR_UNUSED) {
                firstUnusedNode = newNode;
            }
            
	        if (newNode != -1) {
	            parentTree[newNode] = startNode;
	        }
        }
        
        private void advance(int direction) {
            startNode = getTarget();
            this.direction = direction;
        }
    }

    private void setRootNode(int node) {
        root = node;
        if (node != -1) {
            parentTree[node] = -1;
        }
    }
    
    /**
     * Creates a new sorted collection using the given comparator to determine
     * sort order.
     * 
     * @param c comparator that determines the sort order
     */
    public LazySortedCollection(Comparator c) {
        this.comparator = c;
    }
    
    /**
     * Tests if this object's internal state is valid. Throws a runtime
     * exception if the state is invalid, indicating a programming error
     * in this class. This method is intended for use in test
     * suites and should not be called by clients.
     */
    public void testInvariants() {
        if (!enableDebug) {
            return;
        }
        
        testInvariants(root);
    }
    
    private void testInvariants(int node) {
        if (node == -1) {
            return;
        }
        
        // Get the current tree size (we will later force the tree size
        // to be recomputed from scratch -- if everything works properly, then
        // there should be no change.
        int treeSize = getSubtreeSize(node);

        int left = leftSubTree[node];
        int right = rightSubTree[node];
        int unsorted = nextUnsorted[node];
        
        if (isUnsorted(node)) {
            Assert.isTrue(left == -1, "unsorted nodes shouldn't have a left subtree"); //$NON-NLS-1$
            Assert.isTrue(right == -1, "unsorted nodes shouldn't have a right subtree"); //$NON-NLS-1$
        }
        
        if (left != -1) {
            testInvariants(left);
            Assert.isTrue(parentTree[left] == node, "left node has invalid parent pointer"); //$NON-NLS-1$
        }
        if (right != -1) {
            testInvariants(right);
            Assert.isTrue(parentTree[right] == node, "right node has invalid parent pointer");             //$NON-NLS-1$
        }

        int previous = node;
        while (unsorted != -1) {
            int oldTreeSize = this.treeSize[unsorted];
            recomputeTreeSize(unsorted);
            
            Assert.isTrue(this.treeSize[unsorted] == oldTreeSize, 
                    "Invalid node size for unsorted node"); //$NON-NLS-1$
            Assert.isTrue(leftSubTree[unsorted] == -1, "unsorted nodes shouldn't have left subtrees"); //$NON-NLS-1$
            Assert.isTrue(rightSubTree[unsorted] == -1, "unsorted nodes shouldn't have right subtrees"); //$NON-NLS-1$
            Assert.isTrue(parentTree[unsorted] == previous, "unsorted node has invalid parent pointer"); //$NON-NLS-1$
            Assert.isTrue(contents[unsorted] != lazyRemovalFlag, "unsorted nodes should not be lazily removed"); //$NON-NLS-1$
            previous = unsorted;
            unsorted = nextUnsorted[unsorted];
        }
        
        // Note that we've already tested that the child sizes are correct... if our size is
        // correct, then recomputing it now should not cause any change.
        recomputeTreeSize(node);
                
        Assert.isTrue(treeSize == getSubtreeSize(node), "invalid tree size"); //$NON-NLS-1$
    }
    
    private boolean isUnsorted(int node) {
        int parent = parentTree[node];
        
        if (parent != -1) {
            return nextUnsorted[parent] == node;
        }
        
        return false;
    }
    
    private final boolean isLess(int element1, int element2) {
        return comparator.compare(contents[element1], contents[element2]) < 0;
    }
    
    /**
     * Adds the given element to the given subtree. Returns the new
     * root of the subtree.
     * 
     * @param subTree index of the subtree to insert elementToAdd into. If -1, 
     *                then a new subtree will be created for elementToAdd
     * @param elementToAdd index of the element to add to the subtree. If -1, this method
     *                 is a NOP.
     * @since 3.1
     */
    private final int addUnsorted(int subTree, int elementToAdd) {
        if (elementToAdd == -1) {
            return subTree;
        }
        
        if (subTree == -1) {
            nextUnsorted[elementToAdd] = -1;
            treeSize[elementToAdd] = 1;
            return elementToAdd;
        }
        
        // If the subTree is empty (ie: it only contains nodes flagged for lazy removal),
        // chop it off.
        if (treeSize[subTree] == 0) {
            removeSubTree(subTree);
            nextUnsorted[elementToAdd] = -1;
            treeSize[elementToAdd] = 1;
            return elementToAdd;
        }
        
        // If neither subtree has any children, add a pseudorandom chance of the
        // newly added element becoming the new pivot for this node. Note: instead
        // of a real pseudorandom generator, we simply use a counter here.
        if (!enableDebug && leftSubTree[subTree] == -1 && rightSubTree[subTree] == -1 
                && leftSubTree[elementToAdd] == -1 && rightSubTree[elementToAdd] == -1) {
	        counter--;
	        
	        if (counter % treeSize[subTree] == 0) {
	            // Make the new node into the new pivot 
	            nextUnsorted[elementToAdd] = subTree;
	            parentTree[elementToAdd] = parentTree[subTree];
	            parentTree[subTree] = elementToAdd;
	            treeSize[elementToAdd] = treeSize[subTree] + 1;
	            return elementToAdd;
	        }
        }
        
        int oldNextUnsorted = nextUnsorted[subTree];
        nextUnsorted[elementToAdd] = oldNextUnsorted;
        
        if (oldNextUnsorted == -1) {
            treeSize[elementToAdd] = 1;
        } else {
            treeSize[elementToAdd] = treeSize[oldNextUnsorted] + 1;
            parentTree[oldNextUnsorted] = elementToAdd;
        }
        
        parentTree[elementToAdd] = subTree;
        
        nextUnsorted[subTree] = elementToAdd;
        treeSize[subTree]++;        
        return subTree;
    }
    
    /**
     * Returns the number of elements in the collection
     * 
     * @return the number of elements in the collection
     */
    public int size() {
        int result = getSubtreeSize(root);
        
        testInvariants();
        
        return result;
    }
    
    /**
     * Given a tree and one of its unsorted children, this sorts the child by moving
     * it into the left or right subtrees. Returns the next unsorted child or -1 if none
     * 
     * @param subTree parent tree
     * @param toMove child (unsorted) subtree
     * @since 3.1
     */
    private final int partition(int subTree, int toMove) {
        int result = nextUnsorted[toMove];
        
        if (isLess(toMove, subTree)) {
            int nextLeft = addUnsorted(leftSubTree[subTree], toMove);
            leftSubTree[subTree] = nextLeft;
            parentTree[nextLeft] = subTree;
        } else {
            int nextRight = addUnsorted(rightSubTree[subTree], toMove);
            rightSubTree[subTree] = nextRight;
            parentTree[nextRight] = subTree;
        }
        
        return result;
    }
    
    /**
     * Partitions the given subtree. Moves all unsorted elements at the given node
     * to either the left or right subtrees. If the node itself was scheduled for
     * lazy removal, this will force the node to be removed immediately. Returns
     * the new subTree.
     * 
     * @param subTree
     * @return the replacement node (this may be different from subTree if the subtree
     * was replaced during the removal)
     * @since 3.1
     */
    private final int partition(int subTree, FastProgressReporter mon) throws InterruptedException {
        if (subTree == -1) {
            return -1;
        }
        
        if (contents[subTree] == lazyRemovalFlag) {
            subTree = removeNode(subTree);
            if (subTree == -1) {
                return -1;
            }
        }
        
        for (int idx = nextUnsorted[subTree]; idx != -1;) { 
            idx = partition(subTree, idx);
            nextUnsorted[subTree] = idx;
            if (idx != -1) {
                parentTree[idx] = subTree;
            }
            
            if (mon.isCanceled()) {
                throw new InterruptedException();
            }
        }
        
        // At this point, there are no remaining unsorted nodes in this subtree
        nextUnsorted[subTree] = -1;
        
        return subTree;
    }
    
    private final int getSubtreeSize(int subTree) {
        if (subTree == -1) {
            return 0;
        }
        return treeSize[subTree];
    }
    
    /**
     * Increases the capacity of this collection, if necessary, so that it can hold the 
     * given number of elements. This can be used prior to a sequence of additions to
     * avoid memory reallocation. This cannot be used to reduce the amount 
     * of memory used by the collection.
     *
     * @param newSize capacity for this collection
     */
    public final void setCapacity(int newSize) {
        if (newSize > contents.length) {
            setArraySize(newSize);
        }
    }
    
    /**
     * Adjusts the capacity of the array.
     * 
     * @param newCapacity
     */
    private final void setArraySize(int newCapacity) {
        Object[] newContents = new Object[newCapacity];
        System.arraycopy(contents, 0, newContents, 0, lastNode);
        contents = newContents;
        
        int[] newLeftSubTree = new int[newCapacity];
        System.arraycopy(leftSubTree, 0, newLeftSubTree, 0, lastNode);
        leftSubTree = newLeftSubTree;
        
        int[] newRightSubTree = new int[newCapacity];
        System.arraycopy(rightSubTree, 0, newRightSubTree, 0, lastNode);
        rightSubTree = newRightSubTree;
        
        int[] newNextUnsorted = new int[newCapacity];
        System.arraycopy(nextUnsorted, 0, newNextUnsorted, 0, lastNode);
        nextUnsorted = newNextUnsorted;
        
        int[] newTreeSize = new int[newCapacity];
        System.arraycopy(treeSize, 0, newTreeSize, 0, lastNode);
        treeSize = newTreeSize;
        
        int[] newParentTree = new int[newCapacity];
        System.arraycopy(parentTree, 0, newParentTree, 0, lastNode);
        parentTree = newParentTree;
    }
    
    /**
     * Creates a new node with the given value. Returns the index of the newly
     * created node.
     * 
     * @param value
     * @return the index of the newly created node
     * @since 3.1
     */
    private final int createNode(Object value) {
        int result = -1;

        if (firstUnusedNode == -1) {
            // If there are no unused nodes from prior removals, then 
            // we add a node at the end
            result = lastNode;
            
            // If this would cause the array to overflow, reallocate the array 
            if (contents.length <= lastNode) {
                setCapacity(lastNode * 2);
            }
            
            lastNode++;
        } else {
            // Reuse a node from a prior removal
            result = firstUnusedNode;
            firstUnusedNode = nextUnsorted[result];
        }
        
        contents[result] = value;
        treeSize[result] = 1;
        
        // Clear pointers
        leftSubTree[result] = -1;
        rightSubTree[result] = -1;
        nextUnsorted[result] = -1;
        
        // As long as we have a hash table of values onto tree indices, incrementally
        // update the hash table. Note: the table is only constructed as needed, and it
        // is destroyed whenever the arrays are reallocated instead of reallocating it.
        if (objectIndices != null) {
            objectIndices.put(value, result);
        }
        
        return result;
    }
    
    /**
     * Returns the current tree index for the given object.
     * 
     * @param value
     * @return the current tree index
     * @since 3.1
     */
    private int getObjectIndex(Object value) {
        // If we don't have a map of values onto tree indices, build the map now.
        if (objectIndices == null) {
            int result = -1;
            
            objectIndices = new IntHashMap((int)(contents.length / loadFactor) + 1, loadFactor);
            
            for (int i = 0; i < lastNode; i++) {
                Object element = contents[i];
                
                if (element != null && element != lazyRemovalFlag) {
                    objectIndices.put(element, i);
                    
                    if (value == element) {
                        result = i;
                    }
                }
            }
            
            return result;
        }
        
        // If we have a map of values onto tree indices, return the result by looking it up in
        // the map
        return objectIndices.get(value, -1);
    }
    
    /**
     * Redirects any pointers from the original to the replacement. If the replacement
     * causes a change in the number of elements in the parent tree, the changes are
     * propogated toward the root.
     * 
     * @param nodeToReplace
     * @param replacementNode
     * @since 3.1
     */
    private void replaceNode(int nodeToReplace, int replacementNode) {
        int parent = parentTree[nodeToReplace];
        
        if (parent == -1) {
            if (root == nodeToReplace) {
                setRootNode(replacementNode);
            }
        } else {
            if (leftSubTree[parent] == nodeToReplace) {
                leftSubTree[parent] = replacementNode;
            } else if (rightSubTree[parent] == nodeToReplace) {
                rightSubTree[parent] = replacementNode;
            } else if (nextUnsorted[parent] == nodeToReplace) {
                nextUnsorted[parent] = replacementNode;
            }
            if (replacementNode != -1) {
                parentTree[replacementNode] = parent;
            }
        }
    }
    
    private void recomputeAncestorTreeSizes(int node) {
        while (node != -1) {
            int oldSize = treeSize[node];
            
            recomputeTreeSize(node);
            
            if (treeSize[node] == oldSize) {
                break;
            }
            
            node = parentTree[node];
        }        
    }
    
    /**
     * Recomputes the tree size for the given node.
     * 
     * @param node
     * @since 3.1
     */
    private void recomputeTreeSize(int node) {
        if (node == -1) {
            return;
        }
        treeSize[node] = getSubtreeSize(leftSubTree[node])
    		+ getSubtreeSize(rightSubTree[node])
    		+ getSubtreeSize(nextUnsorted[node])
    		+ (contents[node] == lazyRemovalFlag ? 0 : 1); 
    }
    
    /**
     * 
     * @param toRecompute
     * @param whereToStop
     * @since 3.1
     */
    private void forceRecomputeTreeSize(int toRecompute, int whereToStop) {
        while (toRecompute != -1 && toRecompute != whereToStop) {
	        recomputeTreeSize(toRecompute);
	        
	        toRecompute = parentTree[toRecompute];
        }
    }
    
    /**
     * Destroy the node at the given index in the tree
     * @param nodeToDestroy
     * @since 3.1
     */
    private void destroyNode(int nodeToDestroy) {
        // If we're maintaining a map of values onto tree indices, remove this entry from
        // the map
        if (objectIndices != null) {
            Object oldContents = contents[nodeToDestroy];
            if (oldContents != lazyRemovalFlag) {
                objectIndices.remove(oldContents);
            }
        }
        
        contents[nodeToDestroy] = null;
        leftSubTree[nodeToDestroy] = -1;
        rightSubTree[nodeToDestroy] = -1;
        
        if (firstUnusedNode == -1) {
            treeSize[nodeToDestroy] = 1;
        } else {
            treeSize[nodeToDestroy] = treeSize[firstUnusedNode] + 1;
            parentTree[firstUnusedNode] = nodeToDestroy;
        }
        
        nextUnsorted[nodeToDestroy] = firstUnusedNode;
        
        firstUnusedNode = nodeToDestroy; 
    }
    
    /**
     * Frees up memory by clearing the list of nodes that have been freed up through removals.
     * 
     * @since 3.1
     */
    private final void pack() {
        
        // If there are no unused nodes, then there is nothing to do
        if (firstUnusedNode == -1) {
            return;
        }
        
        int reusableNodes = getSubtreeSize(firstUnusedNode);
        int nonPackableNodes = lastNode - reusableNodes;
        
        // Only pack the array if we're utilizing less than 1/4 of the array (note:
        // this check is important, or it will change the time bounds for removals)
        if (contents.length < MIN_CAPACITY || nonPackableNodes > contents.length / 4) {
            return;
        }
        
        // Rather than update the entire map, just null it out. If it is needed,
        // it will be recreated lazily later. This will save some memory if the
        // map isn't needed, and it takes a similar amount of time to recreate the
        // map as to update all the indices.
        objectIndices = null;
        
        // Maps old index -> new index
        int[] mapNewIdxOntoOld = new int[contents.length];
        int[] mapOldIdxOntoNew = new int[contents.length];
        
        int nextNewIdx = 0;
        // Compute the mapping. Determine the new index for each element 
        for (int oldIdx = 0; oldIdx < lastNode; oldIdx++) {
            if (contents[oldIdx] != null) {
                mapOldIdxOntoNew[oldIdx] = nextNewIdx;
                mapNewIdxOntoOld[nextNewIdx] = oldIdx;
                nextNewIdx++;
            } else {
                mapOldIdxOntoNew[oldIdx] = -1;
            }
        }
        
        // Make the actual array size double the number of nodes to allow
        // for expansion.
        int newNodes = nextNewIdx;
        int newCapacity = Math.max(newNodes * 2, MIN_CAPACITY);
        
        // Allocate new arrays
        Object[] newContents = new Object[newCapacity];
        int[] newTreeSize = new int[newCapacity];
        int[] newNextUnsorted = new int[newCapacity];
        int[] newLeftSubTree = new int[newCapacity];
        int[] newRightSubTree = new int[newCapacity];
        int[] newParentTree = new int[newCapacity];
        
        for (int newIdx = 0; newIdx < newNodes; newIdx++) {
            int oldIdx = mapNewIdxOntoOld[newIdx];
            newContents[newIdx] = contents[oldIdx];
            newTreeSize[newIdx] = treeSize[oldIdx];
            
            int left = leftSubTree[oldIdx];
            if (left == -1) {
                newLeftSubTree[newIdx] = -1;
            } else {
                newLeftSubTree[newIdx] = mapOldIdxOntoNew[left];
            }
            
            int right = rightSubTree[oldIdx];
            if (right == -1) {
                newRightSubTree[newIdx] = -1;                
            } else {
                newRightSubTree[newIdx] = mapOldIdxOntoNew[right];
            }

            int unsorted = nextUnsorted[oldIdx];
            if (unsorted == -1) {
                newNextUnsorted[newIdx] = -1;
            } else {
                newNextUnsorted[newIdx] = mapOldIdxOntoNew[unsorted];
            }
            
            int parent = parentTree[oldIdx];
            if (parent == -1) {
                newParentTree[newIdx] = -1;
            } else {
                newParentTree[newIdx] = mapOldIdxOntoNew[parent];
            }
        }
        
        contents = newContents;
        nextUnsorted = newNextUnsorted;
        treeSize = newTreeSize;
        leftSubTree = newLeftSubTree;
        rightSubTree = newRightSubTree;
        parentTree = newParentTree;
        
        if (root != -1) {
            root = mapOldIdxOntoNew[root];
        }
        
        // All unused nodes have been removed
        firstUnusedNode = -1;
        lastNode = newNodes;
    }
    
    /**
     * Adds the given object to the collection. Runs in O(1) amortized time.
     * 
     * @param toAdd object to add
     */
    public final void add(Object toAdd) {
    	Assert.isNotNull(toAdd);
        // Create the new node
        int newIdx = createNode(toAdd);
        
        // Insert the new node into the root tree
        setRootNode(addUnsorted(root, newIdx));
        
        testInvariants();
    }
    
    /**
     * Adds all items from the given collection to this collection 
     * 
     * @param toAdd objects to add
     */
    public final void addAll(Collection toAdd) {
    	Assert.isNotNull(toAdd);
        Iterator iter = toAdd.iterator();
        while (iter.hasNext()) {
            add(iter.next());
        }
        
        testInvariants();
    }
    
    /**
     * Adds all items from the given array to the collection
     * 
     * @param toAdd objects to add
     */
    public final void addAll(Object[] toAdd) {
    	Assert.isNotNull(toAdd);
        for (int i = 0; i < toAdd.length; i++) {
            Object object = toAdd[i];
            
            add(object);
        }
        
        testInvariants();
    }
    
    /**
     * Returns true iff the collection is empty
     * 
     * @return true iff the collection contains no elements
     */
    public final boolean isEmpty() {
        boolean result = (root == -1);
        
        testInvariants();
        
        return result;
    }
    
    /**
     * Removes the given object from the collection. Has no effect if
     * the element does not exist in this collection.
     * 
     * @param toRemove element to remove
     */
    public final void remove(Object toRemove) {
        internalRemove(toRemove);
        
        pack();
        
        testInvariants();
    }
    
    /**
     * Internal implementation of remove. Removes the given element but does not
     * pack the container after the removal.
     * 
     * @param toRemove element to remove
     */
    private void internalRemove(Object toRemove) {
        int objectIndex = getObjectIndex(toRemove);
        
        if (objectIndex != -1) {
            int parent = parentTree[objectIndex];
            lazyRemoveNode(objectIndex);
            //Edge parentEdge = getEdgeTo(objectIndex);
            //parentEdge.setTarget(lazyRemoveNode(objectIndex));
            recomputeAncestorTreeSizes(parent);
        }
        
        //testInvariants();
    }
    
    /**
     * Removes all elements in the given array from this collection.
     * 
     * @param toRemove elements to remove 
     */
    public final void removeAll(Object[] toRemove) {
    	Assert.isNotNull(toRemove);
    	
        for (int i = 0; i < toRemove.length; i++) {
            Object object = toRemove[i];
            
            internalRemove(object);
        }
    	pack();
    }
    
    /**
     * Retains the n smallest items in the collection, removing the rest. When
     * this method returns, the size of the collection will be n. Note that
     * this is a no-op if n > the current size of the collection.
     * 
     * Temporarily package visibility until the implementation of FastProgressReporter
     * is finished.
     * 
     * @param n number of items to retain
     * @param mon progress monitor
     * @throws InterruptedException if the progress monitor is cancelled in another thread
     */
    /* package */ final void retainFirst(int n, FastProgressReporter mon) throws InterruptedException {
        int sz = size();
        
        if (n >= sz) {
            return;
        }
        
        removeRange(n, sz - n, mon);
        
        testInvariants();
    }
    
    /**
     * Retains the n smallest items in the collection, removing the rest. When
     * this method returns, the size of the collection will be n. Note that
     * this is a no-op if n > the current size of the collection.
     * 
     * @param n number of items to retain
     */
    public final void retainFirst(int n) {
        try {
            retainFirst(n, new FastProgressReporter());
        } catch (InterruptedException e) {
        }
        
        testInvariants();
    }
    
    /**
     * Removes all elements in the given range from this collection.
     * For example, removeRange(10, 3) would remove the 11th through 13th
     * smallest items from the collection.
     * 
     * @param first 0-based index of the smallest item to remove
     * @param length number of items to remove
     */
    public final void removeRange(int first, int length) {
        try {
            removeRange(first, length, new FastProgressReporter());
        } catch (InterruptedException e) {
        }
        
        testInvariants();
    }
    
    /**
     * Removes all elements in the given range from this collection.
     * For example, removeRange(10, 3) would remove the 11th through 13th
     * smallest items from the collection.
     * 
     * Temporarily package visiblity until the implementation of FastProgressReporter is
     * finished.
     * 
     * @param first 0-based index of the smallest item to remove
     * @param length number of items to remove
     * @param mon progress monitor
     * @throws InterruptedException if the progress monitor is cancelled in another thread
     */
    /* package */ final void removeRange(int first, int length, FastProgressReporter mon) throws InterruptedException {
    	removeRange(root, first, length, mon);
    	
    	pack();
    	
    	testInvariants();
    }
    
    private final void removeRange(int node, int rangeStart, int rangeLength, FastProgressReporter mon) throws InterruptedException {
    	if (rangeLength == 0) {
    		return;
    	}
    	
    	int size = getSubtreeSize(node);
    	
    	if (size <= rangeStart) {
    		return;
    	}
    	
    	// If we can chop off this entire subtree without any sorting, do so.
    	if (rangeStart == 0 && rangeLength >= size) {
    		removeSubTree(node);
    		return;
    	}
    	try {
	    	// Partition any unsorted nodes
    	    node = partition(node, mon);
	    	
	    	int left = leftSubTree[node];
	    	int leftSize = getSubtreeSize(left);
	    	
	    	int toRemoveFromLeft = Math.min(leftSize - rangeStart, rangeLength);
	    	
	    	// If we're removing anything from the left node
	    	if (toRemoveFromLeft >= 0) {
	    		removeRange(leftSubTree[node], rangeStart, toRemoveFromLeft, mon);
	    		
	    		// Check if we're removing from both sides
	    		int toRemoveFromRight = rangeStart + rangeLength - leftSize - 1;
	    		
	    		if (toRemoveFromRight >= 0) {
	    			// Remove from right subtree
	    			removeRange(rightSubTree[node], 0, toRemoveFromRight, mon);
	    			
	    			// ... removing from both sides means we need to remove the node itself too
	    			removeNode(node);
	    			return;
	    		}
	    	} else {
	    		// If removing from the right side only
	    		removeRange(rightSubTree[node], rangeStart - leftSize - 1, rangeLength, mon);
	    	}
    	} finally {
    	    recomputeTreeSize(node);
    	}
    }
    
    /**
     * Prunes the given subtree (and all child nodes, sorted or unsorted).
     * 
     * @param subTree
     * @since 3.1
     */
    private final void removeSubTree(int subTree) {
        if (subTree == -1) {
            return;
        }
        
        // Destroy all unsorted nodes
        for (int next = nextUnsorted[subTree]; next != -1;) {
            int current = next;
            next = nextUnsorted[next];
            
            // Destroy this unsorted node
            destroyNode(current);
        }
        
        // Destroy left subtree
        removeSubTree(leftSubTree[subTree]);
        
        // Destroy right subtree
        removeSubTree(rightSubTree[subTree]);
        
        replaceNode(subTree, -1);
        // Destroy pivot node
        destroyNode(subTree);
    }
    
    /**
     * Schedules the node for removal. If the node can be removed in constant time,
     * it is removed immediately.
     * 
     * @param subTree
     * @return the replacement node
     * @since 3.1
     */
    private final int lazyRemoveNode(int subTree) {
        int left = leftSubTree[subTree];
        int right = rightSubTree[subTree];

        // If this is a leaf node, remove it immediately
        if (left == -1 && right == -1) {
            int result = nextUnsorted[subTree];
            replaceNode(subTree, result);
            destroyNode(subTree);
            return result;
        }
        
        // Otherwise, flag it for future removal
        Object value = contents[subTree];
        contents[subTree] = lazyRemovalFlag;
        treeSize[subTree]--;
        if (objectIndices != null) {
            objectIndices.remove(value);
        }
        
        return subTree;
    }
    
    /**
     * Removes the given subtree, replacing it with one of its children.
     * Returns the new root of the subtree
     * 
     * @param subTree
     * @return the index of the new root
     * @since 3.1
     */
    private final int removeNode(int subTree) {
        int left = leftSubTree[subTree];
        int right = rightSubTree[subTree];
        
        if (left == -1 || right == -1) {
            int result = -1;
            
            if (left == -1 && right == -1) {
                // If this is a leaf node, replace it with its first unsorted child
                result = nextUnsorted[subTree];
            } else {
                // Either the left or right child is missing -- replace with the remaining child  
                if (left == -1) {
                    result = right;
                } else {
                    result = left;
                }

                try {
                    result = partition(result, new FastProgressReporter());
                } catch (InterruptedException e) {
                    
                }
                if (result == -1) {
                    result = nextUnsorted[subTree];
                } else {
	                int unsorted = nextUnsorted[subTree];
	                nextUnsorted[result] = unsorted;
	                int additionalNodes = 0;
	                if (unsorted != -1) {
	                    parentTree[unsorted] = result;
	                    additionalNodes = treeSize[unsorted];
	                }
	                treeSize[result] += additionalNodes;
                }
            }
            
            replaceNode(subTree, result);
            destroyNode(subTree);
            return result;
        }
                
        // Find the edges that lead to the next-smallest and
        // next-largest nodes
        Edge nextSmallest = new Edge(subTree, DIR_LEFT);
        while (!nextSmallest.isNull()) {
            nextSmallest.advance(DIR_RIGHT);
        }
        
        Edge nextLargest = new Edge(subTree, DIR_RIGHT);
        while (!nextLargest.isNull()) {
            nextLargest.advance(DIR_LEFT);
        }
        
        // Index of the replacement node
        int replacementNode = -1;
        
        // Count of number of nodes moved to the right
        
        int leftSize = getSubtreeSize(left);
        int rightSize = getSubtreeSize(right);
        
        // Swap with a child from the larger subtree
        if (leftSize > rightSize) {
            replacementNode = nextSmallest.getStart();

            // Move any unsorted nodes that are larger than the replacement node into
            // the left subtree of the next-largest node
            Edge unsorted = new Edge(replacementNode, DIR_UNSORTED);
            while (!unsorted.isNull()) {
                int target = unsorted.getTarget();
                
                if (!isLess(target, replacementNode)) {
                    unsorted.setTarget(nextUnsorted[target]);
                    nextLargest.setTarget(addUnsorted(nextLargest.getTarget(), target));
                } else {
                    unsorted.advance(DIR_UNSORTED);
                }
            }
            
            forceRecomputeTreeSize(unsorted.getStart(), replacementNode);
            forceRecomputeTreeSize(nextLargest.getStart(), subTree);
        } else {
            replacementNode = nextLargest.getStart();

            // Move any unsorted nodes that are smaller than the replacement node into
            // the right subtree of the next-smallest node
            Edge unsorted = new Edge(replacementNode, DIR_UNSORTED);
            while (!unsorted.isNull()) {
                int target = unsorted.getTarget();
                
                if (isLess(target, replacementNode)) {
                    unsorted.setTarget(nextUnsorted[target]);
                    nextSmallest.setTarget(addUnsorted(nextSmallest.getTarget(), target));
                } else {
                    unsorted.advance(DIR_UNSORTED);
                }
            }
            
            forceRecomputeTreeSize(unsorted.getStart(), replacementNode);
            forceRecomputeTreeSize(nextSmallest.getStart(), subTree);
        }
        
        // Now all the affected treeSize[...] elements should be updated to reflect the
        // unsorted nodes that moved. Swap nodes. 
        Object replacementContent = contents[replacementNode];
        contents[replacementNode] = contents[subTree];
        contents[subTree] = replacementContent;
        
        if (objectIndices != null) {
            objectIndices.put(replacementContent, subTree);
            // Note: currently we don't bother updating the index of the replacement
            // node since we're going to remove it immediately afterwards and there's
            // no good reason to search for the index in a method that was given the
            // index as a parameter...
            
            // objectIndices.put(contents[replacementNode], replacementNode)
        }
        
        int replacementParent = parentTree[replacementNode]; 
        
        replaceNode(replacementNode, removeNode(replacementNode));
        //Edge parentEdge = getEdgeTo(replacementNode);
        //parentEdge.setTarget(removeNode(replacementNode));

        forceRecomputeTreeSize(replacementParent, subTree);
        recomputeTreeSize(subTree);
        
        //testInvariants();
        
        return subTree;
    }
   
    /**
     * Removes all elements from the collection
     */
    public final void clear() {
        lastNode = 0;
        setArraySize(MIN_CAPACITY);
        root = -1;
        firstUnusedNode = -1;
        objectIndices = null;
        
        testInvariants();
    }
    
    /**
     * Returns the comparator that is determining the sort order for this collection
     * 
     * @return comparator for this collection
     */
    public Comparator getComparator() {
        return comparator;
    }
    
    /**
     * Fills in an array of size n with the n smallest elements from the collection.
     * Can compute the result in sorted or unsorted order. 
     * 
     * Currently package visible until the implementation of FastProgressReporter is finished.
     * 
     * @param result array to be filled
     * @param sorted if true, the result array will be sorted. If false, the result array
     * may be unsorted. This does not affect which elements appear in the result, only their 
     * order.
     * @param mon monitor used to report progress and check for cancellation
     * @return the number of items inserted into the result array. This will be equal to the minimum
     * of result.length and container.size()
     * @throws InterruptedException if the progress monitor is cancelled
     */
    /* package */ final int getFirst(Object[] result, boolean sorted, FastProgressReporter mon) throws InterruptedException {
        int returnValue = getRange(result, 0, sorted, mon);
        
        testInvariants();
        
        return returnValue;
    }
    
    /**
     * Fills in an array of size n with the n smallest elements from the collection.
     * Can compute the result in sorted or unsorted order. 
     * 
     * @param result array to be filled
     * @param sorted if true, the result array will be sorted. If false, the result array
     * may be unsorted. This does not affect which elements appear in the result. It only
     * affects their order. Computing an unsorted result is asymptotically faster.
     * @return the number of items inserted into the result array. This will be equal to the minimum
     * of result.length and container.size()
     */
    public final int getFirst(Object[] result, boolean sorted) {
        int returnValue = 0;
        
        try {
            returnValue = getFirst(result, sorted, new FastProgressReporter());
        } catch (InterruptedException e) {
        }
        
        testInvariants();
        
        return returnValue;
    }
    
    /**
     * Given a position defined by k and an array of size n, this fills in the array with
     * the kth smallest element through to the (k+n)th smallest element. For example, 
     * getRange(myArray, 10, false) would fill in myArray starting with the 10th smallest item
     * in the collection. The result can be computed in sorted or unsorted order. Computing the
     * result in unsorted order is more efficient.
     * <p>
     * Temporarily set to package visibility until the implementation of FastProgressReporter
     * is finished.
     * </p>
     * 
     * @param result array to be filled in
     * @param rangeStart index of the smallest element to appear in the result
     * @param sorted true iff the result array should be sorted
     * @param mon progress monitor used to cancel the operation
     * @throws InterruptedException if the progress monitor was cancelled in another thread
     */
    /* package */ final int getRange(Object[] result, int rangeStart, boolean sorted, FastProgressReporter mon) throws InterruptedException {
        return getRange(result, 0, rangeStart, root, sorted, mon);
    }
    
    /**
     * Computes the n through n+k items in this collection.
     * Computing the result in unsorted order is more efficient. Sorting the result will
     * not change which elements actually show up in the result. That is, even if the result is
     * unsorted, it will still contain the same elements as would have been at that range in
     * a fully sorted collection. 
     * 
     * @param result array containing the result
     * @param rangeStart index of the first element to be inserted into the result array
     * @param sorted true iff the result will be computed in sorted order
     * @return the number of items actually inserted into the result array (will be the minimum
     * of result.length and this.size())
     */
    public final int getRange(Object[] result, int rangeStart, boolean sorted) {
        int returnValue = 0;
        
        try {
            returnValue = getRange(result, rangeStart, sorted, new FastProgressReporter());
        } catch (InterruptedException e) {
        }
        
        testInvariants();
        
        return returnValue;
    }
    
    /**
     * Returns the item at the given index. Indexes are based on sorted order.
     * 
     * @param index index to test
     * @return the item at the given index
     */
    public final Object getItem(int index) {
        Object[] result = new Object[1];
        try {
            getRange(result, index, false, new FastProgressReporter());
        } catch (InterruptedException e) {
            // shouldn't happen
        }
        Object returnValue = result[0];
        
        testInvariants();
        
        return returnValue;
    }
    
    /**
     * Returns the contents of this collection as a sorted or unsorted
     * array. Computing an unsorted array is more efficient.
     * 
     * @param sorted if true, the result will be in sorted order. If false,
     * the result may be in unsorted order.
     * @return the contents of this collection as an array.
     */
    public final Object[] getItems(boolean sorted) {
        Object[] result = new Object[size()];
        
        getRange(result, 0, sorted);
        
        return result;
    }
    
    private final int getRange(Object[] result, int resultIdx, int rangeStart, int node, boolean sorted, FastProgressReporter mon) throws InterruptedException {
        if (node == -1) {
            return 0;
        }

        int availableSpace = result.length - resultIdx;
        
        // If we're asking for all children of the current node, simply call getChildren
        if (rangeStart == 0) {
            if (treeSize[node] <= availableSpace) {
                return getChildren(result, resultIdx, node, sorted, mon);
            }
        }
        
        node = partition(node, mon);
        if (node == -1) {
            return 0;
        }
        
        int inserted = 0;
        
        int numberLessThanNode = getSubtreeSize(leftSubTree[node]);
                
        if (rangeStart < numberLessThanNode) {
            if (inserted < availableSpace) {
                inserted += getRange(result, resultIdx, rangeStart, leftSubTree[node], sorted, mon);
            }
        }
        
        if (rangeStart <= numberLessThanNode) {
	        if (inserted < availableSpace) {
	            result[resultIdx + inserted] = contents[node];
	            inserted++;
	        }	        
        } 
        
        if (inserted < availableSpace) {
            inserted += getRange(result, resultIdx + inserted,
                Math.max(rangeStart - numberLessThanNode - 1, 0), rightSubTree[node], sorted, mon);
        }
        
        return inserted;
    }
    
    /**
     * Fills in the available space in the given array with all children of the given node.
     * 
     * @param result 
     * @param resultIdx index in the result array where we will begin filling in children
     * @param node
     * @return the number of children added to the array
     * @since 3.1
     */
    private final int getChildren(Object[] result, int resultIdx, int node, boolean sorted, FastProgressReporter mon) throws InterruptedException {
        if (node == -1) {
            return 0;
        }
        
        int tempIdx = resultIdx;
        
        if (sorted) {
            node = partition(node, mon);
            if (node == -1) {
                return 0;
            }
        }
        
        // Add child nodes smaller than this one
        if (tempIdx < result.length) {
            tempIdx += getChildren(result, tempIdx, leftSubTree[node], sorted, mon);
        }
        
        // Add the pivot
        if (tempIdx < result.length) {
            Object value = contents[node];
            if (value != lazyRemovalFlag) {
                result[tempIdx++] = value;
            }
        }
        
        // Add child nodes larger than this one
        if (tempIdx < result.length) {
            tempIdx += getChildren(result, tempIdx, rightSubTree[node], sorted, mon);
        }
        
        // Add unsorted children (should be empty if the sorted flag was true)
        for (int unsortedNode = nextUnsorted[node]; unsortedNode != -1 && tempIdx < result.length; 
        	unsortedNode = nextUnsorted[unsortedNode]) {
            
            result[tempIdx++] = contents[unsortedNode];
        }
        
        return tempIdx - resultIdx;
    }

    /**
     * Returns true iff this collection contains the given item
     * 
     * @param item item to test
     * @return true iff this collection contains the given item
     */
    public boolean contains(Object item) {
    	Assert.isNotNull(item);
        boolean returnValue = (getObjectIndex(item) != -1);
        
        testInvariants();
        
        return returnValue;
    }
}

Back to the top