
Xpand Documentation
Sven Efftinge, Peter Friese, Arno Hase, Dennis Hübner, Clemens Kadura, Bernd

Kolb, Jan Köhnlein, Dieter Moroff, Karsten Thoms, Markus Völter, Patrick Schönbach,
Moritz Eysholdt, Steven Reinisch, Darius Jockel, Andre Arnold and contributors

Copyright 2004 - 2014

Xpand Documentation

iii

1. Getting Started .. 1
1. Xpand Setup ... 1
2. Tutorial overview .. 1
3. Defining an EMF metamodel .. 1

3.1. Creating an EMF project .. 1
3.2. Defining the (meta)model ... 2

4. Generating the EMF tooling .. 5
5. Setting up the generator project ... 8
6. Defining an Example Data Model ... 10
7. Using Dynamic EMF ... 12
8. Generating code from the example model .. 13

8.1. The workflow definition ... 13
8.2. Running the workflow ... 13
8.3. Templates .. 15
8.4. Running the generator again .. 16

9. Checking Constraints with the Check Language .. 17
9.1. Defining the constraint ... 17
9.2. Integration into the workflow file ... 17

10. Extensions .. 18
10.1. Expression Extensions .. 18
10.2. Java Extensions ... 18

I. Reference .. 21
2. Xpand / Xtend / Check Reference ... 22

1. Introduction .. 22
2. Type System .. 22

2.1. Types .. 22
2.2. Built-In Types .. 23
2.3. Metamodel Implementations (also known as Meta-Metamodels) 24
2.4. Using different Metamodel implementations (also known as Meta-Metamodels) 25
2.5. Metamodel Reference .. 27

3. Expressions .. 30
3.1. Literals and special operators for built-in types ... 30
3.2. Special Collection operations ... 32
3.3. if expression ... 34
3.4. switch expression ... 34
3.5. Chain expression ... 34
3.6. new expression ... 35
3.7. 'GLOBALVAR' expression ... 35
3.8. Multi methods (multiple dispatch) .. 35
3.9. Casting .. 36
3.10. Xpand keywords and metamodel properties .. 36

4. Check .. 36
4.1. Description of the Check language ... 36
4.2. The workflow component CheckComponent ... 37

5. Xtend ... 37
5.1. Xtend files ... 37
5.2. Comments .. 38
5.3. Import Statements ... 38
5.4. Extension Import Statement .. 38
5.5. Extensions ... 38
5.6. Java Extensions .. 40
5.7. Create Extensions (Model Transformation) .. 41
5.8. Calling Extensions From Java ... 42
5.9. WorkflowComponent ... 43
5.10. Aspect-Oriented Programming in Xtend ... 43

6. Xpand2 .. 46
6.1. Template files and encoding .. 46
6.2. General structure of template files .. 46

Xpand Documentation

iv

6.3. Statements of the Xpand language .. 46
6.4. Aspect-Oriented Programming in Xpand .. 52
6.5. Generator Workflow Component .. 53
6.6. Example for using Aspect-Oriented Programming in Xpand 58
6.7. The Problem .. 58
6.8. Example .. 58
6.9. More Aspect Orientation .. 59

7. Profiler .. 60
3. Built-in types API documentation .. 62

1. Object .. 62
2. String .. 62
3. Integer .. 63
4. Boolean .. 64
5. Real .. 64
6. Collection ... 65
7. List .. 66
8. Set .. 66
9. xpand2::Type ... 66
10. xpand2::Feature ... 67
11. xpand2::Property ... 67
12. xpand2::Operation ... 67
13. xpand2::StaticProperty ... 67
14. Void ... 67
15. xtend::AdviceContext ... 67
16. xpand2::Definition ... 68
17. xpand2::Iterator ... 68

4. Stdlib .. 69
1. Introduction .. 69
2. Stdlib extensions ... 69

2.1. IO extensions ... 69
2.2. Counter extensions .. 71
2.3. Properties extensions ... 72
2.4. Element properties extensions .. 73
2.5. Issues extensions ... 73
2.6. Naming extensions .. 75
2.7. Globalvar extensions .. 75
2.8. Cloning extensions .. 76
2.9. Cross references extensions ... 76
2.10. UID extensions ... 77
2.11. Mixin extensions ... 77
2.12. Tracing extensions ... 78

3. Stdlib workflow components ... 79
3.1. SystemCommand .. 79
3.2. SlotCopier .. 80
3.3. SlotListAdder ... 80
3.4. SlotPrinter .. 81

5. Xpand Eclipse Integration ... 82
1. Introduction .. 82
2. Installation .. 82
3. Overview ... 82
4. File decorations ... 82
5. Editors ... 82

5.1. Syntax coloring ... 82
5.2. Code completion ... 83
5.3. Xpand tag delimiter creation support ... 83

6. Preference pages .. 83
6.1. Metamodel contributors .. 83
6.2. Global preferences ... 83

Xpand Documentation

v

6.3. Preferences per project ... 84
7. Xpand Nature and Xpand Builder ... 84

7.1. Problem markers ... 84
8. Running a workflow .. 85

6. Incremental Generation .. 87
1. Technical Background .. 87
2. Using Incremental Generation .. 87

2.1. The Incremental Generation Facade .. 87
2.2. The Incremental Generation Callback .. 88

3. Additional Notes ... 89
3.1. Limitations ... 89
3.2. Performance Considerations .. 89

7. Improve performance using the backend .. 91
1. Technical background ... 91

1.1. How it works in interpreted mode .. 91
2. Using the backend ... 92

2.1. A quickstart ... 92
2.2. Compiling sources to Java .. 92
2.3. Executing workflows using the backend .. 92
2.4. Implementing functions in Java - the Java Annotations Middleend 93

3. Call functions registered at the backend from Java ... 94
8. UML2 Adapter .. 95

1. Introduction .. 95
2. Installation .. 95
3. Setting up Eclipse .. 95

3.1. Profiles in Eclipse ... 95
4. Runtime Configuration ... 95

4.1. Workflow .. 95
9. XSD Adapter ... 97

1. Prerequisites ... 97
2. Overview ... 97
3. Workflow Components ... 97

3.1. XSDMetaModel ... 97
3.2. XMLReader ... 98
3.3. XMLWriter ... 98
3.4. XMLBeautifier ... 99

4. Behind the scenes: Transforming XSD to Ecore .. 99
5. How to declare XML Schemas .. 99

II. Tutorials .. 101
10. UML2 Example .. 102

1. Setting up Eclipse .. 102
2. Setting up the project ... 102
3. Creating a UML2 Model ... 102

3.1. Modelling the content ... 103
4. Code generation ... 104

4.1. Defining the templates .. 104
4.2. Defining the workflow ... 104

5. Profile Support .. 105
5.1. Defining a Profile .. 105
5.2. Applying the Profile ... 105
5.3. Generating Code ... 106

11. XSD Tutorial .. 108
1. Setup ... 108
2. Overview .. 108
3. Step 1: Create a Project .. 108
4. Step 2: Define a Meta Model using XML Schema .. 110
5. Step 3: Create a Model using XML ... 111
6. Step 4: Create a Template using Xpand .. 112

Xpand Documentation

vi

7. Step 5: Create a Workflow .. 112
8. Step 6: Execute Workflow aka Generate Code ... 113

Index ... 116

1

Chapter 1. Getting Started
This example uses Eclipse EMF as the basis for code generation. A large amount of available third-party tools
makes EMF a good basis. Specifically, better tools for building EMF metamodels are available already (Xtext,
GMF, etc.). To get a deeper understanding of EMF we recommend that you first read the EMF tutorial at

• http://www-128.ibm.com/developerworks/library/os-ecemf1/

• http://www-128.ibm.com/developerworks/library/os-ecemf2/

• http://www-128.ibm.com/developerworks/library/os-ecemf3/

You can also run this tutorial without a complete understanding of EMF, but the tutorial might seem unnecessarily
complex to you.

1. Xpand Setup
Before you can go through the tutorial and execute the examples, you need to have Xpand installed. Please consider
http://www.eclipse.org/modeling/m2t/downloads/?project=xpand for details.

2. Tutorial overview
The purpose of this tutorial is to illustrate code generation with Xpand from EMF models. The process we are
going to go through, will start by defining a metamodel (using EMF tooling), coming up with some example data,
writing code generation templates, running the generator and finally adding some constraint checks.

The actual content of the example is rather trivial – we will generate Java classes following the JavaBean
conventions. The model will contain entities (such as Person or Vehicle) including some attributes and
relationships among them – a rather typical data model. From these entities in the model, we want to generate the
Beans for implementation in Java. In a real setting, we might also want to generate persistence mappings, etc. We
will not do this for this simple introduction.

3. Defining an EMF metamodel
To illustrate the metamodel, before we deal with the intricacies of EMF, here is the metamodel in UML:

Figure 1. Sample metamodel

3.1. Creating an EMF project
Create an EMF project as depicted below:

http://www-128.ibm.com/developerworks/library/os-ecemf1/
http://www-128.ibm.com/developerworks/library/os-ecemf2/
http://www-128.ibm.com/developerworks/library/os-ecemf3/
http://www.eclipse.org/modeling/m2t/downloads/?project=xpand

Getting Started

2

Figure 2. Create EMF project

It is important that you create an EMF project, not just a simple or a Java project. Name it
xpand.demo.emf.datamodel.

3.2. Defining the (meta)model
Create a new source folder metamodel in that project. Then, create a new Ecore model in that source folder
named data.ecore. Use EPackage as the model object.

Getting Started

3

Figure 3. Create new Ecore model

This opens the Ecore Editor. You will see a root package with name null. Open the Properties View (context
menu). Set the following properties for the package:

• Name: data

• Ns prefix: data

• Ns URI: http://www.xpand.org/xpand.demo.emf.datamodel

Figure 4. Adjust namespace settings

Getting Started

4

Create the following Ecore model.1Make sure you set the following properties exactly as described next:

Within the data package, create these EClass elements with their attributes:2

EClass name EAttribute name EAttribute EType

DataModel

 name EString

Entity

 name EString

Attribute

 name EString

 type EString

EntityReference

 name EString

 toMany EBoolean

Now, it is time to create references between the model elements. Add children of type EReferences as follows:3

EClass EReference name EReference attribute
name

EReference attribute
value

DataModel

 entity

 EType Entity

 containment true

 Lowerbound 0

 Upperbound -1

Entity

 attribute

 EType Attribute

 containment true

 Lowerbound 1

 Upperbound -1

Entity

 reference

 EType EntityReference

 containment true

 Lowerbound 0

 Upperbound -1

EntityReference

 target

 EType Entity

 containment false

1To add children, right-click on the element to which you want to add these children and select the type of the child from the list. To configure
the properties, open the properties dialog by selecting Show Properties View at the bottom of any of the context menus. Note that this is not
an EMF tutorial. For more details on how to build EMF (meta-)models, please refer to the EMF documentation.
2Attributes are children of type EAttribute. Please fill in the Name and the EType properties.
3Note: there are a couple of -1's ... don't miss the minus! Also, the containment flag is essential. If containment is true you will be able to
create children of the referenced type, otherwise you can only reference them.

Getting Started

5

EClass EReference name EReference attribute
name

EReference attribute
value

 Lowerbound 1

 Upperbound 1

Figure 5. Metamodel structure

EMF saves the model we created above in its own dialect of XMI. To avoid any ambiguities, here is the complete
XMI source for the metamodel. It goes into the file data.ecore:

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0"
 xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="data"
 nsURI="http://www.xpand.org/xpand.demo.emf.datamodel" nsPrefix="data">
 <eClassifiers xsi:type="ecore:EClass" name="DataModel">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="entity" upperBound="-1"
 eType="#//Entity" containment="true"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Entity">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="attribute" lowerBound="1"
 upperBound="-1" eType="#//Attribute" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="reference" upperBound="-1"
 eType="#//EntityReference" containment="true"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Attribute">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="type"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="EntityReference">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="toMany"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="target" lowerBound="1"
 eType="#//Entity"/>
 </eClassifiers>
</ecore:EPackage>

4. Generating the EMF tooling
In addition to providing the Ecore meta-metamodel, EMF also comes with support for building (more or less
usable) editors. These are generated automatically from the metamodel we just defined. In order to define example
models (which we will do below) we have to generate these editors. Also, we have to generate the implementation

Getting Started

6

classes for our metamodel. To generate all these things, we have to define a markup model that contains a number
of specifics to control the generation of the various artifacts. This markup model is called genmodel.

So we have to define the genmodel first. Select the data.ecore model in the explorer and right mouse click

to New → Other → Eclipse Modelling Framework → EMF Generator Model. Follow the following five steps;
note that they are also illustrated in the next figure.

1. Select EMF Generator Model

2. Define the name

3. Select the folder

4. Select Ecore model as source

5. Press the Load button and then Finish

Figure 6. Creating the genmodel

As a consequence, you will get the finished EMF genmodel. It is a kind of "wrapper" around the original
metamodel, thus, it has the same structure, but the model elements have different properties. As of now, you do
not have to change any of these.

Getting Started

7

Figure 7. Structure of the genmodel

You can now generate the other projects.

Figure 8. Generate editing projects

You now have all the generated additional projects.

Getting Started

8

Figure 9. Generated projects

We will not look any deeper at these additional projects for now. However, there is one important thing to
point out: The generator also generated the implementation classes for the metamodel. If you take a look
into xpand.demo.emf.datamodel/src folder, you can find classes (actually, interfaces at the top level)
that represent the concepts defined in your metamodel. These can be used to access the model. For some
more details on how to use the EMF model APIs as well as the reflective cousins, take a look at http://
voelterblog.blogspot.com/2005/12/codeblogck-emf_10.html.

5. Setting up the generator project
In order to make it a bit less painless to work with Eclipse EMF (we would have to export the plugins, restart
Eclipse, etc. etc.), we start another Eclipse in the IDE. This instance is called the Runtime Workbench. Therefore

select the xpand.demo.emf.datamodel.edit project and choose from the context menu Run As → Eclipse
Application.

Figure 10. Launch runtime platform

If you are using a Mac or *nix you should now open the workspace preference page and change the default
encoding to ISO-8859-1.4Import the xpand.demo.emf.datamodel project from your original workspace.5

Note that importing the project does not physically move the files,6 so you can have the project be part of both
workspaces at the same time.

Create a new Xpand Project7 called xpand.demo.emf.datamodel.generator. Do not choose the option
"Generate a simple example".

4Window → Preferences → General → Workspace → Text file encoding. This is necessary to have the guillemet brackets available.
5File → Import → General → Existing Project into Workspace
6Unless you checked the option "Copy projects into workspace"
7File → New → Project → Xpand → Xpand Project

http://voelterblog.blogspot.com/2005/12/codeblogck-emf_10.html
http://voelterblog.blogspot.com/2005/12/codeblogck-emf_10.html

Getting Started

9

Figure 11. Create new Xpand project

Your Xpand project will already be configured for use of EMF models. You can check this in the project properties
dialog:

Getting Started

10

Figure 12. Project properties

6. Defining an Example Data Model
Select the src folder and then choose New → Other → Example EMF Model Creation Wizards → Data Model.
Create a new data model, call it example.data. On the last page of the wizard, select Model as model object.

Getting Started

11

Figure 13. Create a sample data model

Next, populate this very model as following. Please note that in the case of attributes you have to define a type
as well (i.e. String), not just a name.

Getting Started

12

Figure 14. Sample data model

Again, to avoid any typos here is the XMI for example.data:

<?xml version="1.0" encoding="UTF-8"?>
<data:DataModel
 xmi:version="2.0"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:data="http://www.xpand.org/xpand.demo.emf.datamodel">
 <entity name="Person">
 <attribute name="name" type="String"/>
 <reference name="cars" toMany="true" target="//@entity.1"/>
 </entity>
 <entity name="Vehicle">
 <attribute name="plate" type="String"/>
 </entity>
</data:DataModel>

7. Using Dynamic EMF
Instead of generating editors and metaclasses, you can also use dynamic EMF. This works by selecting, in the
opened metamodel, the root class of the model you want to create (here: DataModel) and then selecting Create
Dynamic Instance from the context menu. This opens an editor that can dynamically edit the respective instance.
The created file by default has an .xmi extension.

Note that Xpand can work completely with dynamic models, there is no reason to generate code. However, if you
want to programmatically work with the model, the generated metaclasses (not the editors!) are really helpful.
Please also keep in mind: in subsequent parts of the tutorial, you will specify the metaModelPackage in various
component configurations in the workflow file, like this:

<metaModel id="mm"
 class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelPackage value="data.DataPackage"/>
</metaModel>

In case of dynamic EMF, there has no metamodel package been generated. So, you have to specify the metamodel
file instead, that is, the .ecore file you just created. Note that the .ecore file has to be in the classpath to
make this work.

<metaModel id="mm"

Getting Started

13

 class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelFile value="data.ecore"/>
</metaModel>

8. Generating code from the example model

8.1. The workflow definition
To run the Xpand generator, you have to define a workflow. It controls which steps (loading models, checking
them, generating code) the generator executes. For details on how workflow files work, please take a look at the
Modeling Workflow Engine Reference Documentation.

Create a workflow.mwe and a workflow.properties in the src folder. The contents of these files is
shown below:

<workflow>
 <property file="workflow.properties"/>

 <bean class="org.eclipse.emf.mwe.utils.StandaloneSetup" >
 <platformUri value=".."/>
 <registerGeneratedEPackage value="data.DataPackage"/>
 </bean>

 <component class="org.eclipse.emf.mwe.utils.Reader">
 <uri value="${modelFile}" />
 <modelSlot value="model" />
 </component>
</workflow>

workflow.properties:

modelFile=platform:/resource/xpand.demo.emf.datamodel.generator/src/example.data
srcGenPath=src-gen
fileEncoding=ISO-8859-1

The workflow tries to load stuff from the classpath; so, for example, the data.DataPackage class is resolved
from the classpath, as is the model file specified in the properties (modelFile=example.data)

This instantiates the example model and stores in a workflow slot named model. Note that in the
metamodelPackage slot, you have to specify the EMF package object (here: data.DataPackage), not the Java
package (which would be data here).

8.2. Running the workflow
Before you actually run the workflow, make sure your metamodel can be found on the classpath.
In our case, this can be achieved by adding the xpand.demo.emf.datamodel project to the
plug-in dependencies of xpand.demo.emf.datamodel.generator. To do this, double click the
file xpand.demo.emf.datamodel.generator/META-INF/MANIFEST.MF. The manifest editor will
appear. Go to the Dependencies tab and click on Add... to add a few new dependencies.

• xpand.demo.emf.datamodel

• org.eclipse.emf.mwe.utils

• org.eclipse.emf.ecore.xmi

• org.eclipse.jface.text

• org.antlr.runtime

• com.ibm.icu

• org.eclipse.jdt.core

Getting Started

14

Figure 15. Add metamodel dependency

Do not forget to save the manifest file!

Now, you can run the workflow from within Eclipse:

Getting Started

15

Figure 16.

The following should be the output:

INFO: --
INFO: EMF Modeling Workflow Engine 1.2.1, Build v201206110920
INFO: (c) 2005-2009 openarchitectureware.org and contributors
INFO: --
INFO: running workflow: ../xpand.demo.emf.datamodel.generator/src/workflow.mwe
INFO:
14.04.2010 15:49:18 org.eclipse.emf.mwe.utils.StandaloneSetup setPlatformUri
INFO: Registering platform uri '..'
14.04.2010 15:49:18 org.eclipse.emf.mwe.utils.StandaloneSetup addRegisterGeneratedEPackage
INFO: Adding generated EPackage 'data.DataPackage'
14.04.2010 15:49:18 org.eclipse.emf.mwe.core.container.CompositeComponent internalInvoke
INFO: Reader: Loading model from platform:/resource/xpand.demo.emf.datamodel.generator/src/example.data
14.04.2010 15:49:19 org.eclipse.emf.mwe.core.WorkflowRunner executeWorkflow
INFO: workflow completed in 116ms!

8.3. Templates
No code is generated yet. This is not surprising, since we did not yet add any templates. Let us change this. Create
a package templates in the srcfolder and within the package a file called Root.xpt.

The Root.xpt looks as follows. By the way, if you need to type the guillemets (« and »), the editor provides
keyboard shortcuts with Ctrl+< and Ctrl+>.

«DEFINE Root FOR data::DataModel»
 «EXPAND Entity FOREACH entity»
«ENDDEFINE»

Getting Started

16

«DEFINE Entity FOR data::Entity»
 «FILE name + ".java"»
 public class «name» {
 «FOREACH attribute AS a»
 // bad practice
 private «a.type» «a.name»;
 «ENDFOREACH»
 }
 «ENDFILE»
«ENDDEFINE»

We have to extend the workflow.mwe file, in order to use the template just written:

<workflow>
 <property file="workflow.properties"/>

 ..

 <component class="org.eclipse.emf.mwe.utils.Reader">
 <uri value="platform:/resource/${modelFile}" />
 ..
</workflow>

First, we clean up the directory where we want to put the generated code.

<component class="org.eclipse.emf.mwe.utils.DirectoryCleaner">
 <directory value="${srcGenPath}" />
</component>

Then, we start the generator component. Its configuration is slightly involved.

<component class="org.eclipse.xpand2.Generator">

First of all, you have to define the metamodel. In our case, we use the EmfMetaModel since we want to work
with EMF models. Also, you have to specific the class name of the EMF package that represents that metamodel.
It has to be on the classpath.

 <metaModel id="mm"
 class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel">
 </metaModel>

Then, you have to define the entry statement for Xpand. Knowing that the model slot contains an instance of
data.DataModel (the XmiReader had put the first element of the model into that slot, and we know from the
data that it is a DataModel), we can write the following statement. Again, notice that model refers to a slot
name here!

 <expand value="templates::Root::Root FOR model"/>

We then specify where the generator should put the generated code and that this generated code should be processed
by a code beautifier:

 <outlet path="${srcGenPath}/">
 <postprocessor
 class="org.eclipse.xpand2.output.JavaBeautifier"/>
 </outlet>

Now, we are almost done.

 </component>
</workflow>

You also need to add the srcGenPath to the workflow.properties file.

modelFile=example.data
srcGenPath=src-gen

8.4. Running the generator again
So, if you restart the generator now, you should get a file generated that looks like this:

Getting Started

17

public class Person {
 // bad practice
 public String lastName;
}

9. Checking Constraints with the Check Language
An alternative to checking constraints with pure Java, is the declarative constraint checking language Check. For
details of this language take a look at the Check language reference. We will provide a simple example here.

9.1. Defining the constraint
We start by defining the constraint itself. We create a new file called checks.chk in the src folder of our
project. It is important that this file resides in the classpath! The file has the following content:

import data;
context Attribute ERROR
 "Names must be more than one char long" :
 name.length > 1;

This constraint says that for the metaclass data::Attribute, we require that the name be more than one
characters long. If this expression evaluates to false, the error message given before the colon will be reported. A
checks file can contain any number of such constraints. They will be evaluated for all instances of the respective
metaclass.

To show a somewhat more involved constraint example, this one ensures that the names of the attributes have
to be unique:

context Entity ERROR
 "Names of Entity attributes must be unique":
 attribute.forAll(a1| attribute.notExists(a2| a1 != a2 && a1.name == a2.name));

9.2. Integration into the workflow file
The following piece of XML is the workflow file we have already used above.

<workflow>
 <property file="workflow.properties"/>

 ..

 <component class="org.eclipse.emf.mwe.utils.Reader">
 <uri value="platform:/resource/${modelFile}" />
 ..
 </component>
</workflow>

After reading the model, we add an additional component, namely the CheckComponent.

<component
 class="org.eclipse.xtend.check.CheckComponent">

As with the code generator, we have to explain to the checker what meta-meta-model and which metamodel we use.

 <metaModel id="mm"
 class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel">
 </metaModel>

We then have to provide the checks file. The component tries to load the file by appending .chk to the name and
searching the classpath – that is why it has to be located in the classpath.

 <checkFile value="checks"/>

Finally, we have to tell the engine on which model or part of the model the checks should work. In general, you
can use the <expressionvalue="..."/> element to define an arbitrary expression on slot contents. For
our purpose, where we want to use the complete EMF data structure in the model slot, we can use the shortcut

Getting Started

18

emfAllChildrenSlot property, which returns the complete subtree below the content element of a specific slot,
including the slot content element itself.

 <emfAllChildrenSlot value="model"/>
 </component>

Running the workflow produces an error in case the length of the name is not greater than one. Again, it makes
sense to add the skipOnError="true" to those subsequent component invocations that need to be skipped in
case the constraint check found errors (typically code generators or transformers).

10. Extensions
It is often the case that you need additional properties in the templates; these properties should not be added to
the metaclasses directly, since they are often specific to the specific code generation target and thus should not
"pollute" the metamodel.

It is possible to define such extensions external to the metaclasses. For details see the Xtend Language
Documentation, we provide an simple example here.

10.1. Expression Extensions
Assume we wanted to change the Attributes part of the template as follows:

«FOREACH attribute AS a»
 private «a.type» «a.name»;

 public void «a.setterName()»(«a.type» value) {
 this.«a.name» = value;
 }

 public «a.type» «a.getterName()»() {
 return this.«a.name»;
 }
«ENDFOREACH»

To make this work, we need to define the setterName() and getterName() operations. We do this by
writing a so-called extension file; we call it java.ext. It must have the .ext suffix to be recognized by
Xpand; the Java name is because it contains Java-generation specific properties. We put this file directly into the
templates directory under src, i.e. directly next to the Root.xpt file. The extension file looks as follows:

First, we have to import the data metamodel; otherwise we would not be able to use the Attribute metaclass.

import data;

We can then define the two new operations setterName and getterName. Note that they take the type on
which they are called as their first parameter, a kind of "explicitly this". After the colon we use an expression that
returns the to-be-defined value.

String setterName(Attribute ele) :
 'set'+ele.name.toFirstUpper();

String getterName(Attribute ele) :
 'get'+ele.name.toFirstUpper();

To make these extensions work, we have to add the following line to the beginning of the Root.xpt template file:

«EXTENSION templates::java»

10.2. Java Extensions
In case you cannot express the "business logic" for the expression with the expression language, you can fall back
to Java. Take a look at the following extension definition file. It is called util.ext and is located in src/
datamodel/generator/util:

String timestamp() :
 JAVA datamodel.generator.util.TemplateUtils.timestamp();

Getting Started

19

Here, we define an extension that is independent of a specific model element, since it does not have a formal
parameter! The implementation of the extension is delegated to a static operation of a Java class. Here is its
implementation:

public class TemplateUtils {
 public static String timestamp() {
 return String.valueOf(System.currentTimeMillis());
 }
}

This element can be used independent of any model element – it is available globally.

Sometimes, it is necessary to access extensions not just from templates and other Xtend files but also from
Java code. The following example is of this kind: We want to define properties that derive the name of the
implementation class from the entity name itself. The best practice for this use case is to implement the derived
property as a Java method, as above. The following piece of code declares properties for Entity:

package datamodel;

import data.Entity;

public class EntityHelper {

 public static String className(Entity e) {
 return e.getName()+"Implementation";
 }

 public static String classFileName(Entity e) {
 return className(e)+".java";
 }

}

In addition, to access the properties from the template files, we define an extension that uses the helper methods.
The helper.ext file is located right next to the helper class shown above, i.e. in the datamodel package:

import data;

String className(Entity e) :
 JAVA datamodel.EntityHelper.className(data.Entity);

String classFileName(Entity e) :
 JAVA datamodel.EntityHelper.classFileName(data.Entity);

In addition to these new properties being accessible from Java code by invoking
EntityHelper.className(someEntity), we can now write the following template:

«EXTENSION templates::java»
«EXTENSION datamodel::generator::util::util»
«EXTENSION datamodel::helper»

«DEFINE Root FOR data::DataModel»
 «EXPAND Entity FOREACH entity»
«ENDDEFINE»

«DEFINE Entity FOR data::Entity»
 «FILE classFileName()»
 // generated at «timestamp()»
 public abstract class «className()» {
 «FOREACH attribute AS a»
 private «a.type» «a.name»;
 public void «a.setterName()»(«a.type» value) {
 this.«a.name» = value;
 }

 public «a.type» «a.getterName()»() {
 return this.«a.name»;
 }
 «ENDFOREACH»
 }
 «ENDFILE»

Getting Started

20

«ENDDEFINE»

For completeness, the following illustration shows the resulting directory and file structure.

Figure 17. What has happened so far

Part I. Reference

22

Chapter 2. Xpand / Xtend / Check
Reference
1. Introduction

The Xpand generator framework provides textual languages, that are useful in different contexts in the MDSD
process (e.g. validation, metamodel extensions, code generation, model transformation). Each language (Check,
Xtend, and Xpand) is built upon a common expression language and type system. Therefore, they can operate on
the same models, metamodels and meta-metamodels and you do not need to learn the syntax again and again,
because it is always the same.

The expressions framework provides a uniform abstraction layer over different meta-meta-models (e.g. EMF
Ecore, Eclipse UML2, JavaBeans, XML Schema etc.). Additionally, it offers a powerful, statically typed
expressions language, which is used in the various textual languages.

2. Type System
The abstraction layer on API basis is called a type system. It provides access to built-in types and different
registered metamodel implementations. These registered metamodel implementations offer access to the types they
provide. The first part of this documentation describes the type system. The expression sub-language is described
afterwards in the second part of this documentation. This differentiation is necessary because the type system and
the expression language are two different things. The type system is a kind of reflection layer, that can be extended
with metamodel implementations. The expression language defines a concrete syntax for executable expressions,
using the type system.

The Java API described here is located in the org.eclipse.xpand.type package and is a part of the subproject
core.expressions.

2.1. Types
Every object (e.g. model elements, values, etc.) has a type. A type contains properties and operations. In addition
it might inherit from other types (multiple inheritance is also possible, depending on the underlying meta-meta-
model).

2.1.1. Type Names
Types have a simple name (e.g. String) and an optional namespace used to distingish between two types with
the same name (e.g. my::metamodel). The delimiter for name space fragments is a double colon "::". A fully
qualified name looks like this:

my::fully::qualified::MetaType

The namespace and name used by a specific type is defined by the corresponding MetaModel implementation.
The EmfMetaModel, for instance, maps EPackages to namespace and EClassifiers to names. Therefore,
the name of the Ecore element EClassifier is called:

ecore::EClassifier

If you do not want to use namespaces (for whatever reason), you can always implement your own metamodel and
map the names accordingly.

2.1.2. Collection Type Names
The built-in type system also contains the following collection types: Collection, List and Set. Because
the expressions language is statically type checked and we do not like casts and ClassCastExceptions, we
introduced the concept of parameterized types. The type system does not support full featured generics, because
we do not need them.

The syntax is:

Collection[my::Type]
List[my::Type]
Set[my::Type]

Xpand / Xtend / Check Reference

23

2.1.3. Features
Each type offers features. The type (resp. the metamodel) is responsible for mapping the features. There are three
different kinds of features:

• Properties

• Operations

• Static properties

Properties are straight forward: They have a name and a type. They can be invoked on instances of the
corresponding type. The same is true for Operations. But in contrast to properties, they can have parameters.
Static properties are the equivalent to enums or constants. They must be invoked statically and they do not have
parameters.

2.2. Built-In Types
As mentioned before, the expressions framework has several built-in types that define operations and properties.
In the following, we will give a rough overview of the types and their features. We will not document all of the
operations here, because the built-in types will evolve over time and we want to derive the documentation from the
implementation (model-driven, of course). For a complete reference, consult the generated API documentation.

2.2.1. Object
Object defines a couple of basic operations, like equals(). The property metaType provides access to Xpand's
type for that Object. Every type has to extend Object.

2.2.2. Void
The Void type can be specified as the return type for operations, although it is not recommended, because
whenever possible expressions should be free of side effects whenever possible. The only possible value is null.
Sometimes it might be useful to use Void as an parameter type, if you want to be able to call a function for
different argument types and also supply a valid implementation when the function is invoked with null.

2.2.3. Simple types (Data types)
The type system doesn't have a concept data type. Data types are just types. As in OCL, we support the following
types: String, Boolean, Integer, Real.

• String: A rich and convenient String library is especially important for code generation. The type system
supports the '+' operator for concatenation, the usual java.lang.String operations (length(), etc.) and
some special operations (like toFirstUpper(), toFirstLower(), regular expressions, etc. often needed
in code generation templates).

• Boolean: Boolean offers the usual operators (Java syntax): &&, ||, !, etc.

• Integer and Real: Integer and Real offer the usual compare operators (<,>,<=,>=) and simple
arithmetics (+,-,*,/). Note that Integer extends Real!

2.2.4. Collection types
The type system has three different Collection types. Collection is the base type, it provides several operations
known from java.util.Collection. The other two types (List, Set) correspond to their java.util
equivalents, too.

2.2.5. Type system types
The type system describes itself, hence, there are types for the different concepts. These types are needed for
reflective programming. To avoid confusion with metatypes with the same name (it is not unusual to have a
metatype called Operation, for instance) we have prefixed all of the types with the namespace xpand2. We
have:

• xpand2::Type

• xpand2::Feature

• xpand2::Property

• xpand2::StaticProperty

• xpand2::Operation

Xpand / Xtend / Check Reference

24

You should be aware that if you name a type by name in an expression the object you get is in fact an
xpand2::Type. A common use case is to prove that an object is of some type or its subtype, using the
instanceOf() operation or exactly of one type.

// results to true, if the result of someExpression is of type MyType or its subtypes
MyType.isInstance(someExpression)

// results to true, if the result of someExpression is exactly of type MyType
someExpression.metaType == MyType

Note that this should be only used when really required. The recommended way to handle alternative
implementations for a type hierarchy is using Multiple Dispatch.

2.3. Metamodel Implementations (also known as Meta-Metamodels)
By default, the type system only knows the built-in types. In order to register your own metatypes (e.g. Entity or
State), you need to register a respective metamodel implementation with the type system. Within a metamodel
implementation the Xpand type system elements (Type, Property, Operation) are mapped to an arbitrary
other type system (e.g. Java reflections, Ecore or XML Schema).

2.3.1. Example JavaMetaModel
For instance, if you want to have the following JavaBean act as a metatype (i.e. your model contains instances
of the type):

public class Attribute {
 private String name;
 private String type;
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getType() {
 return type;
 }
 public void setType(String type) {
 this.type = type;
 }
}

You need to use the JavaMetaModel implementation which uses the ordinary Java reflection layer in order
to map access to the model.

So, if you have the following expression in e.g. Xpand:

myattr.name.toFirstUpper()

and myattr is the name of a local variable pointing to an instance of Attribute. The Xpand type system
asks the metamodel implementations, if they 'know' a type for the instance of Attribute. If you have the
JavaMetaModel registered it will return an xpand2::Type which maps to the underlying Java class. When
the type is asked if it knows a property 'name', it will inspect the Java class using the Java reflection API.

The JavaMetaModel implementation shipped with Xpand can be configured with a strategy [GOF95-Pattern] in
order to control or change the mapping. For instance, the JavaBeansStrategy maps getter and setter methods
to simple properties, so we would use this strategy for the example above.

2.3.2. Eclipse IDE MetaModelContributors
You should know that for each Metamodel implementation you use at runtime, you need to have a so
called MetamodelContributor extension for the plugins to work with. If you just use one of the standard
metamodel implementations (EMF, UML2 or Java) you don't have to worry about it, since Xpand is shipped with
respective MetamodelContributors (see the corresponding docs for details). If you need to implement your own
MetamodelContributor you should have a look at the Eclipse plug-in reference doc.

2.3.3. Configuring Metamodel implementations with the workflow
You need to configure your Xpand language components with the respective metamodel implementations.

Xpand / Xtend / Check Reference

25

A possible configuration of the Xpand2 generator component looks like this:

<component class="org.eclipse.xpand2.Generator">
 <metaModel class="org.eclipse.type.emf.EmfMetaModel">
 <metaModelPackage value="my.generated.MetaModel1Package"/>
 </metaModel>
 <metaModel class="org.eclipse.type.emf.EmfMetaModel">
 <metaModelFile value="my/java/package/metamodel2.ecore"/>
 </metaModel>
 ...
</component>

In this example the EmfMetaModel implementation is configured two times. This means that we want to use two
metamodels at the same time, both based on EMF. The metaModelPackage property is a property that is specific
to the EmfMetaModel (located in the org.eclipse.xtend.typesystem.emf plugin). It points to the
generated EPackages interface. The second meta model is configured using the Ecore file. You do no need
to have a generated Ecore model for Xpand in order to work. The EmfMetaModel works with dynamic EMF
models just as it works with generated EMF models.

Note that is recommended to prefer the EmfRegistryMetaModel instead of the EmfMetaModel, although
EmfMetaModel is derived from the EmfRegistryMetaModel. Further it is recommended to use platform
URIs (see API Doc URI) to refer to EMF resources.

The use of platform URIs in the workflow requires setting up EMF for standalone execution with the
StandaloneSetup class from the org.eclipse.emf.mwe.utils plugin. Further, StandaloneSetup is
used to register known EMF packages. An equivalent workflow configuration for the sample above would look
like this:

<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">
 <platformUri value=".."/>
 <registerGeneratedEPackage value="my.generated.MetaModel1Package"/>
 <registerEcoreFile value="platform:/resource/my/java/package/metamodel2.ecore"/>
</bean>
...
<component class="org.eclipse.xpand2.Generator">
 <metaModel class="org.eclipse.type.emf.EmfRegistryMetaModel"/>
 ...
</component>

The StandaloneSetup is given the path to the platform. This is the path to which platform resource URIs are
resolved relative to. It usually points to the workspace or check out location of the plugin project, which is usually
one directory above the working directory in which a workflow is executed.

Metamodel instances are often shared between different components that make use of expressions (most notably
the Xpand Generator, XtendComponent and CheckComponent). Normally you don't want that a
Metamodel instance configured and instantiated for each workflow component. MWE lets you instantiate a class
using the <bean> tag and by giving the bean an id value, this same instance can be referred to using the idRef
attribute. This would lead to this workflow:

<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup">
 <platformUri value=".."/>
 <registerGeneratedEPackage value="my.generated.MetaModel1Package"/>
 <registerEcoreFile value="platform:/resource/my/java/package/metamodel2.ecore"/>
</bean>
<bean id="mm_emf" class="org.eclipse.type.emf.EmfRegistryMetaModel"/>
...
<component class="org.eclipse.xpand2.Generator">
 <metaModel idRef="mm_emf"/>
 ...
</component>

2.4. Using different Metamodel implementations (also known as Meta-
Metamodels)

With Xpand you can work on different kinds of Model representations at the same time in a transparent manner.
One can work with EMF models, XML DOM models, and simple JavaBeans in the same Xpand template. You
just need to configure the respective MetaModel implementations.

http://help.eclipse.org/galileo/topic/org.eclipse.emf.doc/references/javadoc/org/eclipse/emf/common/util/URI.html

Xpand / Xtend / Check Reference

26

If you want to do so you need to know how the type lookup works. Let us assume that we have an EMF metamodel
 and a model based on some Java classes. Then the following would be a possible configuration:

<component class="org.eclipse.xpand2.Generator">
 <metaModel class="org.eclipse.internal.xtend.type.impl.java.JavaMetaModel"/>
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel">
 <metaModelFile value="my/java/package/metamodel.ecore"/>
 </metaModel>

 ...
</component>

When the runtime needs to access a property of a given object, it asks the metamodels in the configured order.
Let us assume that our model element is an instance of the Java type org.eclipse.emf.ecore.EObject
and it is a dynamic instance of an EMF EClass MyType.

We have three Metamodels:

1. Built-Ins (always the first one)

2. JavaMetaModel

3. EMFMetaModel - metamodel.ecore

The first one will return the type Object (not java.lang.Object but Object of Xpand!). At this point the
type Object best fits the request, so it will act as the desired type.

The second metamodel returns a type called org::eclipse::emf::ecore::EObject The type system
will check if the returned type is a specialization of the current 'best-fit' type (Object). It is, because
it extends Object (Every metatype has to extend Object). At this time the type system assumes
org::eclipse::emf::ecore::EObject to be the desired type.

The third metamodel will return metamodel::MyType which is the desired type. But unfortunately it doesn't
extend org::eclipse::emf::ecore::EObject as it has nothing to do with those Java types. Instead it
extends emf::EObject which extends Object.

We need to swap the configuration of the two metamodels to get the desired type.

<component class="org.eclipse.xpand2.Generator">
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelFile value="my/java/package/metamodel.ecore"/>
 </metaModel>
 <metaModel class="org.eclipse.internal.xtend.type.impl.java.JavaMetaModel"/>

 ...
</component>

The order of the metamodels is important for the work within the Xpand-editors. The metamodels to work with can
be configured inside the Xtend/Xpand -properties dialog. The Activated metamodel contributors table is a ordered
list. The more specific metamodels have to be placed at the top of the list.

Xpand / Xtend / Check Reference

27

2.5. Metamodel Reference
In the following, each of the built-in metamodels that come with Xpand will be documented. Furthermore, there
will be some guidelines on how to implement your own metamodel.

2.5.1. EMF Metamodels
This section will describe the metamodels that can be used for EMF models. Please note that you have to execute
one of the setup utility classes, Setup or StandaloneSetup, in your workflow before you can use one
of the EMF metamodels.

2.5.1.1. The EMF Registry Metamodel
(org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel)

This metamodel looks for the referenced metamodels in the global EMF model registry. This means, when using
this metamodel, only models that are registered in this global EMF model registry will be accessible from within
the metamodel.

This metamodel provides the following configuration property:

Xpand / Xtend / Check Reference

28

Table 1. Properties of EmfRegistryMetaModel

Name of property Description

useSingleGlobalResourceSet This boolean property determines the way resource
sets are used. If set to true, all model resources will
be stored in a single global resource set. Otherwise,
a separate resource set will be used for each model
resource.

2.5.1.2. The EMF Metamodel (org.eclipse.xtend.typesystem.emf.EmfMetaModel)
This metamodel is a specialized version of the EMF registry metamodel. In addition to the features of the former,
it allows to specify an unregistered model in different ways that will be added to the metamodel.

This metamodel provides the following configuration properties:

Table 2. Properties of EmfMetaModel

Name of property Description

useSingleGlobalResourceSet This boolean property determines the way resource
sets are used. If set to true, all model resources will
be stored in a single global resource set. Otherwise,
a separate resource set will be used for each model
resource.

metaModelFile Sets the path to the Ecore file that will be added to the
metamodel.

metaModelDescriptor Adds a model to the metamodel by specifying the
name of an EPackage descriptor class.

metaModelPackage Adds a model to the metamodel by specifying the
name of an EPackage.

2.5.2. UML Metamodels
Xpand also provides several metamodels that allow to use UML models in conjunction with this model-to-text
generation framework. Please note that you have to execute the setup utility class Setup in your workflow
before you can use one of the UML metamodels

2.5.2.1. The UML2 Metamodel (org.eclipse.xtend.typesystem.uml2.UML2MetaModel)
This metamodel is a specialized version of the EMF metamodel. It provides access to UML2 models, and it has
the following configuration properties:

Table 3. Properties of UML2MetaModel

Name of property Description

useSingleGlobalResourceSet This boolean property determines the way resource
sets are used. If set to true, all model resources will
be stored in a single global resource set. Otherwise,
a separate resource set will be used for each model
resource.

modelFile Sets the path to the UML2 model file that will be
added to the metamodel.

This implementation will be rarely used, since usually profiled UML models will be used and therefore the Profile
Metamodel is.

2.5.2.2. The UML2 Profile Metamodel
(org.eclipse.xtend.typesystem.uml2.profile.ProfileMetaModel)

Xpand / Xtend / Check Reference

29

This metamodel allows to apply UML profiles to UML2 models, and extends the UML2 Metamodel. It has the
following configuration properties:

Table 4. Properties of ProfileMetaModel

Name of property Description

useSingleGlobalResourceSet This boolean property determines the way resource
sets are used. If set to true, all model resources will
be stored in a single global resource set. Otherwise,
a separate resource set will be used for each model
resource.

modelFile Sets the path to the UML2 model file that will be
added to the metamodel. Use resource URIs for the
values.

profile Sets the path to the UML profile that will be applied to
the UML2 model. This property can be used multiple
times if more than one profile is used. Use resource
URIs for the values.

2.5.2.3. The XMI reader
(org.eclipse.xtend.typesystem.uml2.profile.ProfilingExtensions.XmiReader)

The XMI reader component is important when working with UML models. It allows to read out a model stored
in an XMI file and put its contents into a model slot.

The XMIReader component provides the following configurable properties:

Table 5. Properties of XMIReader

Name of property Description

metaModelFile Sets the path to the Ecore file that will be added to the
metamodel.

metaModelDescriptor Adds a model to the metamodel by specifying the
name of an EPackage descriptor class.

metaModelPackage Adds a model to the metamodel by specifying the
name of an EPackage.

outputSlot Sets the name of the model slot where the read model
will be stored in.

firstElementOnly This boolean property determines if only the first
model element of the XMI file will be used. If set to
true, only the first model element will be used, all
other elements will be ignored. Otherwise, all model
elements in the XMI file will be used.

2.5.3. The Java Metamodel (org.eclipse.internal.xtend.type.impl.java.JavaMetaModel)
The Java metamodel allows normal Java classes as metatypes for your metamodel. The JavaMetaClass
uses the strategy pattern to define how the elements are exactly mapped to the metamodel elements. There
is a class called org.eclipse.internal.xtend.type.impl.java.JavaBeansMetaModel that is
preconfigured with a strategy that maps simple Java beans onto the metamodel elements.

The Java metamodel has no configurable properties.

2.5.4. The XSD Metamodel (org.eclipse.xtend.typesystem.xsd.XSDMetaModel)
The XSD metamodel provides access to models implemented in the XML Schema Definition language. It has the
following configuration properties:

Xpand / Xtend / Check Reference

30

Table 6. Properties of XSDMetaModel

Name of property Description

id Sets the ID of the current model.

registerPackagesGlobally This boolean property determines if the model
packages will be registered globally. If set to true,
the model packages will be registered in the global
registry. Otherwise, packages will not be registered.

savePackagesPath Sets the path where model packages will be saved (in
XMI format).

2.5.5. Implementing Your Own Metamodel
The Xpand framework also allows you to integrate new metamodel implementations. This section quickly outlines
the steps that have to be taken in order to implement a metamodel:

1. Create a class that implements the MetaModel interface.

2. In order to be able to integrate your metamodel into the Eclipse UI, you also have to provide a metamodel
contributor class for your metamodel implementation that implements either the MetaModelContributor
or the MetaModelContributor2 interface.

3. Finally, you have to extend the org.eclipse.xtend.shared.ui.metaModelContributors
extension point in order to register your metamodel contributor with the Eclipse UI.

3. Expressions
The expression sub-language is a syntactical mixture of Java and OCL. This documentation provides a detailed
description of each available expression. Let us start with some simple examples.

Accessing a property:

myModelElement.name

Accessing an operation:

myModelElement.doStuff()

simple arithmetic:

1 + 1 * 2

boolean expressions (just an example:-)):

!('text'.startsWith('t') && ! false)

3.1. Literals and special operators for built-in types
There are several literals for built-in types:

3.1.1. Object
There are naturally no literals for object, but we have two operators:

equals:

obj1 == obj2

not equals:

obj1 != obj2

3.1.2. Void
The only possible instance of Void is the null reference. Therefore, we have one literal:

null

Xpand / Xtend / Check Reference

31

3.1.3. Type literals
The literal for types is just the name of the type (no '.class' suffix, etc.). Example:

String // the type string
my::special::Type // evaluates to the type 'my::special::Type'

3.1.4. StaticProperty literals
The literal for static properties (aka enum literals) is correlative to type literals:

my::Color::RED

3.1.5. String
There are two different literal syntaxes (with the same semantics):

'a String literal'
"a String literal" // both are okay

For Strings the expression sub-language supports the plus operator that is overloaded with concatenation:

'my element '+ ele.name +' is really cool!'

Note, that multi-line Strings are supported.

3.1.6. Boolean
The boolean literals are:

true
false

Operators are:

true && false // AND
true || false // OR
! true // NOT

3.1.7. Integer and Real
The syntax for integer literals is as expected:

// integer literals
3
57278
// real literals
3.0
0.75

Additionally, we have the common arithmetic operators:

3 + 4 // addition
4 - 5 // subtraction
2 * 6 // multiplication
3 / 64 // divide
// Unary minus operator
- 42
- 47.11

Furthermore, the well known compare operators are defined:

4 > 5 // greater than
4 < 5 // smaller than
4 >= 23 // greater equals than
4 <= 12 // smaller equals than

3.1.8. Collections
There is a literal for lists:

Xpand / Xtend / Check Reference

32

{1,2,3,4} // a list with four integers

There is no other special concrete syntax for collections. If you need a set, you have to call the toSet() operation
on the list literal:

{1,2,4,4}.toSet() // a set with 3(!) integers

3.2. Special Collection operations
Like OCL, the Xpand expression sub-language defines several special operations on collections. However, those
operations are not members of the type system, therefore you cannot use them in a reflective manner.

3.2.1. select
Sometimes, an expression yields a large collection, but one is only interested in a special subset of the collection.
The expression sub-language has special constructs to specify a selection out of a specific collection. These are
the select and reject operations. The select specifies a subset of a collection. A select is an operation on
a collection and is specified as follows:

collection.select(v | boolean-expression-with-v)

select returns a sublist of the specified collection. The list contains all elements for which the evaluation of
boolean-expression-with-v results is true. Example:

{1,2,3,4}.select(i | i >= 3) // returns {3,4}

3.2.2. typeSelect
A special version of a select expression is typeSelect. Rather than providing a boolean expression a class
name is here provided.

collection.typeSelect(SomeType)

typeSelect returns that sublist of the specified collection, that contains only objects which are an instance of
the specified class (also inherited). It is equivalent to the expression

collection.select(e | SomeType.isInstance(e))

3.2.3. reject
The reject operation is similar to the select operation, but with reject we get the subset of all the elements
of the collection for which the expression evaluates to false. The reject syntax is identical to the select
syntax:

collection.reject(v | boolean-expression-with-v)

Example:

{1,2,3,4}.reject(i | i >= 3) // returns {1,2}

3.2.4. collect
As shown in the previous section, the select and reject operations always result in a sub-collection of the
original collection. Sometimes one wants to apply an operation on all elements of the collection and collect the
results of the evaluation in a list. In such cases, we can use a collect operation. The collect operation uses
the same syntax as the select and reject and is written like this:

collection.collect(v | expression-with-v)

collect again iterates over the target collection and evaluates the given expression on each element. In contrast
to select, the evaluation result is collected in a list. When an iteration is finished the list with all results is
returned. Example:

namedElements.collect(ne | ne.name) // returns a list of strings
namedElements.collect(ne | ne.name.length > 3) // returns a list of boolean

Xpand / Xtend / Check Reference

33

3.2.5. Shorthand for collect (and more than that)
As navigation through many objects is very common, there is a shorthand notation for collect that makes the
expressions more readable. Instead of

self.employee.collect(e | e.birthdate)

one can also write:

self.employee.birthdate

In general, when a property is applied to a collection of Objects, it will automatically be interpreted as a collect
over the members of the collection with the specified property.

The syntax is a shorthand for collect, if the feature does not return a collection itself. But sometimes we have
the following:

self.buildings.rooms.windows // returns a list of windows

This syntax works, but one cannot express it using the collect operation in an easy way.

3.2.6. forAll
Often a boolean expression has to be evaluated for all elements in a collection. The forAll operation allows
specifying a Boolean expression, which must be true for all objects in a collection in order for the forAll
operation to return true:

collection.forAll(v | boolean-expression-with-v)

The result of forAll is true if boolean-expression-with-v is true for all the elements contained in
a collection. If boolean-expression-with-v is false for one or more of the elements in the collection,
then the forAll expression evaluates to false.

Example:

{3,4,500}.forAll(i | i < 10) // evaluates to false (500 < 10 is false)

3.2.7. exists
Often you will need to know whether there is at least one element in a collection for which a boolean is true.
The exists operation allows you to specify a Boolean expression which must be true for at least one object in
a collection:

collection.exists(v | boolean-expression-with-v)

The result of the exists operation is true if boolean-expression-with-v is true for at least one
element of collection. If the boolean-expression-with-v is false for all elements in collection, then
the complete expression evaluates to false.

Example:

{3,4,500}.exists(i | i < 10) // evaluates to true (e.g. 3 < 10 is true)

3.2.8. sortBy
If you want to sort a list of elements, you can use the higher order function sortBy . The list you invoke the
sortBy operation on, is sorted by the results of the given expression.

Example:

myListOfEntity.sortBy(entity | entity.name)

In the example the list of entities is sorted by the name of the entities. Note that there is no such Comparable
type in Xpand. If the values returned from the expression are instances of java.util.Comparable the
compareTo method is used, otherwise toString() is invoked and the the result is used.

Xpand / Xtend / Check Reference

34

All the following expressions return true:

{'C','B','A'}.sortBy(e | e) == {'A','B','C'}
{'AAA','BB','C'}.sortBy(e | e.length) == {'C','BB','AAA'}
{5,3,1,2}.sortBy(e | e) == {1,2,3,5}
{5,3,1,2}.sortBy(e | e - 2 * e) == {5,3,2,1}
...

3.3. if expression
There are two different forms of conditional expressions. The first one is the so-called if expression. Syntax:

condition ? thenExpression : elseExpression

Example:

name != null ? name : 'unknown'

Alternatively, you also could write:

if name != null then
 name
else
 'unknown'

3.4. switch expression
The other one is called switch expression. Syntax:

switch (expression) {
 (case expression : thenExpression)*
 default : catchAllExpression
}

The default part is mandatory, because switch is an expression, therefore it needs to evaluate to something in
any case.

Example:

switch (person.name) {
 case 'Hansen' : 'Du kanns platt schnacken'
 default : 'Du kanns mi nech verstohn!'
}

There is an abbreviation for Boolean expressions:

switch {
 case booleanExpression : thenExpression
 default : catchAllExpression
}

3.5. Chain expression
Expressions and functional languages should be free of side effects as far as possible. But sometimes there you
need invocations that do have side effects. In some cases expressions even do not have a return type (i.e. the return
type is Void). If you need to call such operations, you can use the chain expression.

Syntax:

anExpr ->
anotherExpr ->
lastExpr

Each expression is evaluated in sequence, but only the result of the last expression is returned.

Example:

person.setName('test') ->
person

Xpand / Xtend / Check Reference

35

This chain expression will set the name of the person first, before it returns the person object itself.

3.6. new expression
The new expression is used to instantiate new objects of a given type:

new TypeName

Note that often create extensions are the better way to instantiate objects when used for model transformations.

3.7. 'GLOBALVAR' expression
Sometimes you don't want to pass everything down the call stack by parameter. Therefore, we have the
GLOBALVAR expression. There are two things you need to do, to use global variables.

3.7.1. Using GLOBALVARS to configure workflows
Each workflow component using the expression framework (Xpand, Check and Xtend) can be configured with
global variables. Here is an example:

<workflow>
 stuff
 <component class="org.eclipse.xpand2.Generator">
 ... usual stuff (see ref doc)
 <globalVarDef name="MyPSM" value="slotNameOfPSM"/>
 <globalVarDef name="ImplClassSuffix" value="'Impl'"/>
 </component>
</workflow>

Note that value contains an expression or slot name. If you want to pass a string value you will have to quote
the value, like the value for ImplClassSuffix in the example.

If you have injected global variables into the respective component, you can call them using the following syntax:

GLOBALVAR ImplClassSuffix

Note, we don't have any static type information. Therefore Object is assumed. So, you have to down cast the
global variable to the intended type:

((String) GLOBALVAR ImplClassSuffix)

It is good practice to type it once, using an Extension and then always refer to that extension:

String implClassSuffix() : GLOBALVAR ImplClassSuffix;
// usage of the typed global var extension
ImplName(Class c) :
 name+implClassSuffix();

3.8. Multi methods (multiple dispatch)
The expressions language supports multiple dispatching . This means that when there is a bunch of overloaded
operations, the decision which operation has to be resolved is based on the dynamic type of all parameters (the
implicit 'this' included).

In Java only the dynamic type of the 'this' element is considered, for parameters the static type is used (this is
called single dispatch).

Here is a Java example:

class MyType {
 boolean equals(Object o) {
 if (o instanceof MyClass) {
 return equals((MyClass)o);
 }
 return super.equals(o);
 }
 boolean equals(MyType mt) {
 //implementation...
 }
}

Xpand / Xtend / Check Reference

36

The method equals(Object o) would not have to be overwritten, if Java would support multiple dispatch.

3.9. Casting
The expression language is statically type checked. Although there are many concepts that help the programmer
to have really good static type information, sometimes. One knows more about the real type than the system. To
explicitly give the system such an information casts are available. Casts are 100% static, so you do not need them,
if you never statically typecheck your expressions!

The syntax for casts is very Java-like:

((String)unTypedList.get(0)).toUpperCase()

3.10. Xpand keywords and metamodel properties
When the name of a metamodel property conflicts with an Xpand or Xtend keyword, the conflict is resolved in
favour of the keyword. To refer to the metamodel property in these cases, its name must be preceded by a '^'
character.

Example:

private String foo(Import ^import) : ^import.name;

4. Check

4.1. Description of the Check language
Xpand also provides a language to specify constraints that the model has to fulfill in order to be correct. This
language is very easy to understand and use. Basically, it is built around the expression syntax that has been
discussed in detail in the previous section. Constraints specified in the Check language have to be stored in files
with the file extension .chk . Furthermore, these files have to be on the Java classpath, of course, in order to be
found. Let us look at an example, in order to understand what these constraints look like and what they do:

import data;
context Attribute ERROR
 "Names have to be more than one character long." :
 name.length > 1;

Now, let us look at the example line by line:

1. First, the metamodel has to be imported.

2. Then, the context is specified for which the constraint applies. In other words, after the context keyword, we
put the name of the metaclass that is going to be checked by the constraint. Then, there follows either ERROR
or WARNING, These keywords specify what kind of action will be taken in case the constraint fails:

Table 7. Types of action for Check constraints

WARNING If the constraint fails, the specified message is printed, but the workflow execution is not stopped.

ERROR If the constraint fails, the specified message is printed and all further processing is stopped.

3. Now, the message that is put in case that the constraint fails is specified as a string. It is possible to include the
value of attributes or the return value of functions into the message in order to make the message more clear.
For example, it would be possible to improve the above example by rewriting it like this:

import data;
context Attribute ERROR
 "Name of '" + name + "too short. Names have to be more than one character long." :
 name.length > 1;

4. Finally, there is the condition itself, which is specified by an expression, which has been discussed in detail in
the previous section. If this expression is true, the constraint is fulfilled.

Please always keep in mind that the message that is associated with the constraint is printed, if the
condition of the constraint is false! Thus, if the specified constraint condition is true, nothing
will be printed out and the constraint will be fulfilled.

Xpand / Xtend / Check Reference

37

4.1.1. Guard Conditions
The Check language of Xpand also provides so called . These conditions allow to apply a check constraint only to
model elements that meet certain criteria. Specifying such a guard condition is done by adding an if clause to the
check constraint. The if clause has to be added after the context clause as demonstrated by the following example:

import data;
context Attribute if name.length > 1 ERROR
 "Attribute names have to start with an 'a'" :
 name.startsWith("a");

4.2. The workflow component CheckComponent
The workflow component org.eclipse.xtend.check.CheckComponent allows to integrate model
validation constraints using the Check into a modeling workflow using MWE.

This component provides the following configuration properties:

Table 8. Properties

Name of property Description

checkFile This property allows to add files containing constraints
written in the Check language to the validation
component.

emfAllChildrenSlot Name of a workflow slot that contains an EMF
object, which has to be validated including all child
elements that it contains. This property only works in
conjunction with EMF based models.

expression This property allows to set a check expression for the
validation component. This property only works in
conjunction with non-EMF based models.

abortOnError This boolean property determines if the workflow will
be aborted or not if one of the validation constraints
fails.

warnIfNothingChecked If this boolean property will be set to true, a warning
will be generated if there were no validation checks.
Otherwise, no warning will be issued.

5. Xtend
Like the expressions sublanguage that summarizes the syntax of expressions for all the other textual languages
delivered with the Xpand framework, there is another commonly used language called Xtend.

This language provides the possibility to define rich libraries of independent operations and non-invasive
metamodel extensions based on either Java methods or Xtend expressions. Those libraries can be referenced from
all other textual languages that are based on the expressions framework.

5.1. Xtend files
An Xtend file must reside in the Java class path of the used execution context. File extension must be *.ext.
Let us have a look at an Xend file.

import my::metamodel;extension other::ExtensionFile;

/**
 * Documentation
 */
anExpressionExtension(String stringParam) :
 doingStuff(with(stringParam))
;

/**
 * java extensions are just mappings

Xpand / Xtend / Check Reference

38

 */
String aJavaExtension(String param) : JAVA
 my.JavaClass.staticMethod(java.lang.String)
;

The example shows the following statements:

1. import statements

2. extension import statements

3. expression or java extensions

5.2. Comments
We have single- and multi-line comments. The syntax for single line comments is:

// my comment

Multi line comments are written like this:

/* My multi line comment */

5.3. Import Statements
Using the import statement one can import name spaces of different types.(see expressions framework reference
documentation).

Syntax is:

import my::imported::namespace;

Xtend does not support static imports or any similar concept. Therefore, the following is incorrect syntax:

import my::imported::namespace::*; // WRONG! import my::Type; // WRONG!

5.4. Extension Import Statement
You can import another Xtend file using the extension statement. The syntax is:

extension fully::qualified::ExtensionFileName;

Note, that no file extension (*.ext) is specified.

5.4.1. Reexporting Extensions
If you want to export extensions from another extension file together with your local extensions, you can add the
keyword reexport to the end of the respective extension import statement.

extension fully::qualified::ExtensionFileName reexport;

5.5. Extensions
The syntax of a simple expression extension is as follows:

ReturnType extensionName(ParamType1 paramName1, ParamType2...): expression-using-params;

Example:

String getterName(NamedElement ele) : 'get'+ele.name.firstUpper();

5.5.1. Extension Invocation
There are two different ways of how to invoke an extension. It can be invoked like a function:

getterName(myNamedElement)

The other way to invoke an extension is through the "member syntax":

myNamedElement.getterName()

Xpand / Xtend / Check Reference

39

For any invocation in member syntax, the target expression (the member) is mapped to the first parameter.
Therefore, both syntactical forms do the same thing.

It is important to understand that extensions are not members of the type system, hence, they are not accessible
through reflection and you cannot specialize or overwrite operations using them.

The expression evaluation engine first looks for an appropriate operation before looking for an extension, in other
words operations have higher precedence.

5.5.2. Type Inference
For most extensions, you do not need to specify the return type, because it can be derived from the specified
expression. The special thing is, that the static return type of such an extension depends on the context of use.

For instance, if you have the following extension

asList(Object o): {o};

the invocation of

asList('text')

has the static type List[String]. This means you can call

asList('text').get(0).toUpperCase()

The expression is statically type safe, because its return type is derived automatically.

There is always a return value, whether you specify it or not, even if you specify explicitly 'Void'.

See the following example.

modelTarget.ownedElements.addAllNotNull(modelSource.contents.duplicate())

In this example duplicate() dispatches polymorphically. Two of the extensions might look like:

Void duplicate(Realization realization):
 realization.Specifier().duplicate()->
 realization.Realizer().duplicate()
;

create target::Class duplicate(source::Class):
 ...
;

If a 'Realization' is contained in the 'contents' list of 'modelSource', the 'Realizer' of the
'Realization' will be added to the 'ownedElements' list of the 'modelTarget'. If you do not want to add
in the case that the contained element is a 'Realization' you might change the extension to:

Void duplicate(Realization realization):
 realization.Specifier().duplicate()->
 realization.Realizer().duplicate() ->
 {}
;

5.5.3. Recursion
There is only one exception: For recursive extensions the return type cannot be inferred, therefore you need to
specify it explicitly:

String fullyQualifiedName(NamedElement n) : n.parent == null ? n.name :
 fullyQualifiedName(n.parent)+'::'+n.name
;

Recursive extensions are non-deterministic in a static context, therefore, it is necessary to specify a return type.

5.5.4. Cached Extensions
If you call an extension without side effects very often, you would like to cache the result for each set of parameters,
in order improve the performance. You can just add the keyword 'cached' to the extension in order to achieve this:

cached String getterName(NamedElement ele) :
 'get'+ele.name.firstUpper()

Xpand / Xtend / Check Reference

40

;

The getterName will be computed only once for each NamedElement.

5.5.5. Private Extensions
By default all extensions are public, i.e. they are visible from outside the extension file. If you want to hide
extensions you can add the keyword 'private' in front of them:

private internalHelper(NamedElement ele) :
 // implementation....
;

5.6. Java Extensions
In some cases one does want to call a Java method from inside an expression. This can be done by providing a
Java extension:

Void myJavaExtension(String param) :
 JAVA my.Type.someMethod(java.lang.String)
;

The signature is the same as for any other extension. Its syntax is:

JAVA fully.qualified.Type.someMethod(my.ParamType1,
 my.ParamType2,
 ...)
;

Note that you cannot use any imported namespaces. You have to specify the type, its method and the parameter
types in a fully qualified way.

Example:

If you have defined the following Java extension:

String concat (String a, String b):
 JAVA my.Helper.concat(java.lang.String, java.lang.String);

and you have the following Java class:

package my;

public class Helper {
 public String concat(String a, String b){
 return a + b;
 }
}

the expressions

concat('Hello ',"world!")
"Hello ".concat('world!')

both result are invoking the Java method void concat(String a, String b).

5.6.1. static vs non-static invocation
The implementation of a Java extension is redirected to a public method in a Java class. If the method is not declared
static it is required that the Java class has a default constructor. Xtend will instantiate the class for each invocation.

5.6.2. IExecutionContextAware
It is possible with a Java Extension to gain access to the ExecutionContext, which enables to retrieve detailed
runtime information on invocation. To use the current ExecutionContext in a Java extension the class must
implement org.eclipse.xtend.expression.IExecutionContextAware

public interface IExecutionContextAware {
 void setExecutionContext (ExecutionContext ctx);
}

The invoked method must not be static.

Xpand / Xtend / Check Reference

41

5.7. Create Extensions (Model Transformation)
The Xtend language supports additional support for model transformations. The concept is called create extension
and it is explained a bit more comprehensive as usual.

Elements contained in a model are usually referenced multiple times. Consider the following model structure:

 P
 / \
 C1 C2
 \ /
 R

A package P contains two classes C1 and C2. C1 contains a reference R of type C2 (P also references C2).

We could write the following extensions in order to transform an Ecore (EMF) model to our metamodel (Package,
Class, Reference).

Package toPackage(EPackage x) :
 let p = new Package :
 p.ownedMember.addAll(x.eClassifiers.toClass()) ->
 p;

Class toClass(EClass x) :
 let c = new Class :
 c.attributes.addAll(x.eReferences.toReference()) ->
 c;

Reference toReference(EReference x) :
 let r = new Reference :
 r.setType(x.eType.toClass()) ->
 r;

For an Ecore model with the above structure, the result would be:

 P
 / \
 C1 C2
 |
 R - C2

What happened? The C2 class has been created 2 times (one time for the package containment and another time
for the reference R that also refers to C2). We can solve the problem by adding the 'cached' keyword to the
second extension:

cached toClass(EClass x) :
 let c = new Class :
 c.attributes.addAll(c.eAttributes.toAttribute()) ->
 c;

The process goes like this:

1. start create P

a. start create C1 (contained in P)

i. start create R (contained in C1)

A. start create C2 (referenced from R)

B. end (result C2 is cached)

ii. end R

b. end C1

c. start get cached C2 (contained in P)

2. end P

So this works very well. We will get the intended structure. But what about circular dependencies? For instance,
C2 could contain a Reference R2 of type C1 (bidirectional references):

The transformation would occur like this:

1. start create P

Xpand / Xtend / Check Reference

42

a. start create C1 (contained in P)

i. start create R (contained in C1)

A. start create C2 (referenced from R)

I. start create R2 (contained in C2)

1. start create C1 (referenced from R1)... OOPS!

C1 is already in creation and will not complete until the stack is reduced. Deadlock! The problem is that the cache
caches the return value, but C1 was not returned so far, because it is still in construction.

The solution: create extensions!

The syntax is as follows:

create Package toPackage(EPackage x) :
 this.classifiers.addAll(x.eClassifiers.toClass());

create Class toClass(EClass x) :
 this.attributes.addAll(x.eReferences.toReference());

create Reference toReference(EReference x) :
 this.setType(x.eType.toClass());

This is not only a shorter syntax, but it also has the needed semantics: The created model element will be added
to the cache before evaluating the body. The return value is always the reference to the created and maybe not
completely initialized element.

5.8. Calling Extensions From Java
The previous section showed how to implement Extensions in Java. This section shows how to call Extensions
from Java.

// setup
XtendFacade f = XtendFacade.create("my::path::MyExtensionFile");

// use
f.call("sayHello",new Object[]{"World"});

The called extension file looks like this:

sayHello(String s) :
 "Hello " + s;

This example uses only features of the BuiltinMetaModel, in this case the "+" feature from the
StringTypeImpl.

Here is another example, that uses the JavaBeansMetaModel strategy. This strategy provides as additional
feature: the access to properties using the getter and setter methods.

For more information about type systems, see the Expressions reference documentation.

We have one JavaBean-like metamodel class:

package mypackage;
public class MyBeanMetaClass {
 private String myProp;
 public String getMyProp() { return myProp; }
 public void setMyProp(String s) { myProp = s;}
}

in addition to the built-in metamodel type system, we register the JavaMetaModel with the
JavaBeansStrategy for our facade. Now, we can use also this strategy in our extension:

// setup facade

XtendFacade f = XtendFacade.create("myext::JavaBeanExtension");

// setup additional type system
JavaMetaModel jmm =
 new JavaMetaModel("JavaMM", new JavaBeansStrategy());

Xpand / Xtend / Check Reference

43

f.registerMetaModel(jmm);

// use the facade
MyBeanMetaClass jb = MyBeanMetaClass();
jb.setMyProp("test");
f.call("readMyProp", new Object[]{jb}));

The called extension file looks like this:

import mypackage;

readMyProp(MyBeanMetaClass jb) :
 jb.myProp
;

5.9. WorkflowComponent
With the additional support for model transformation, it makes sense to invoke Xtend within a workflow. A typical
workflow configuration of the Xtend component looks like this:

<component class="org.eclipse.xtend.XtendComponent">
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelFile value="metamodel1.ecore"/>
 </metamodel>
 <metaModel class="org.eclipse.xtend.typesystem.type.emf.EmfMetaModel">
 <metaModelFile value="metamodel2.ecore"/>
 </metaModel>
 <invoke value="my::example::Trafo::transform(inputSlot)"/>
 <outputSlot value="transformedModel"/>
</component>

Note that you can mix and use any kinds of metamodels (not only EMF metamodels).

5.10. Aspect-Oriented Programming in Xtend
Using the workflow engine, it is now possible to package (e.g. zip) a written generator and deliver it as a kind of
black box. If you want to use such a generator but need to change some things without modifying any code, you
can make use of around advices that are supported by Xtend.

The following advice is weaved around every invocation of an extension whose name starts with 'my::generator::':

around my::generator::*(*) :
 log('Invoking ' + ctx.name) -> ctx.proceed()
;

Around advices let you change behaviour in an non-invasive way (you do not need to touch the packaged
extensions).

5.10.1. Join Point and Point Cut Syntax
Aspect orientaton is basically about weaving code into different points inside the call graph of a software module.
Such points are called join points. In Xtend the join points are the extension invocations (Note that Xpand offers
a similar feature, see the Xpand documentation).

One specifies on which join points the contributed code should be executed by specifying something like a 'query'
on all available join points. Such a query is called a point cut.

around [pointcut] :
 expression;

A point cut consists of a fully qualified name and a list of parameter declarations.

5.10.1.1. Extensions Name
The extension name part of a point cut must match the fully qualified name of the definition of the join point. Such
expressions are case sensitive. The asterisk character is used to specify wildcards.

Some examples:

my::Extension::definition // extensions with the specified name
org::eclipse::xpand2::* //extensions prefixed with 'org::eclipse::xpand2::'

Xpand / Xtend / Check Reference

44

Operation // extensions containing the word 'Operation' in it.
* // all extensions

Be careful when using wildcards, because you will get an endless recursion, in case you weave an
extension, which is called inside the advice.

5.10.1.2. Parameter Types
The parameters of the extensions that we want to add our advice to, can also be specified in the point cut. The rule
is, that the type of the specified parameter must be the same or a supertype of the corresponding parameter type
(the dynamic type at runtime) of the definition to be called.

Additionally, one can set the wildcard at the end of the parameter list, to specify that there might be none or more
parameters of any kind.

Some examples:

my::Templ::extension() // extension without parameters
my::Templ::extension(String s) // extension with exactly one parameter of type String
my::Templ::extension(String s,*) // templ def with one or more parameters,
 // where the first parameter is of type String
my::Templ::extension(*) // templ def with any number of parameters

5.10.1.3. Proceeding
Inside an advice, you might want to call the underlying definition. This can be done using the implicit variable ctx,
which is of the type xtend::AdviceContext and provides an operation proceed() which invokes the underlying
definition with the original parameters (Note that you might have changed any mutable object in the advice before).

If you want to control what parameters are to be passed to the definition, you can use the operation
proceed(List[Object] params). You should be aware, that in advices, no type checking is done.

Additionally, there are some inspection properties (like name, paramTypes, etc.) available.

5.10.2. Workflow configuration
To weave the defined advices into the different join points, you need to configure the XtendComponent with
the qualified names of the Extension files containing the advices.

Example:

<component class="org.eclipse.xtend.XtendComponent">
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelFile value="metamodel1.ecore"/>
 </metamodel>
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelFile value="metamodel2.ecore"/>
 </metaModel>

 <invoke value="my::example::Trafo::transform(inputSlot)"/>
 <outputSlot value="transformedModel"/>
 <advices value="my::Advices,my::Advices2"/>
</component>

5.10.3. Model-to-Model transformation with Xtend
This example uses Eclipse EMF as the basis for model-to-model transformations. It builds on the emfExample
documented elsewhere. Please read and install the emfExample first.

The idea in this example is to transform the data model introduced in the EMF example into itself. This might
seem boring, but the example is in fact quite illustrative.

5.10.4. Workflow
By now, you should know the role and structure of workflow files. Therefore, the interesting aspect of the workflow
file below is the XtendComponent.

<workflow>
 <property file="workflow.properties"/>
 ...
 <component class="org.eclipse.xtend.XtendComponent">

Xpand / Xtend / Check Reference

45

 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelPackage value="data.DataPackage"/>
 </metaModel>
 <invoke value="test::Trafo::duplicate(rootElement)"/>
 <outputSlot value="newModel"/>
 </component>
 ...
</workflow>

As usual, we have to define the metamodel that should be used, and since we want to transform a data model into
a data model, we need to specify only the data.DataPackage as the metamodel.

We then specify which function to invoke for the transformation. The statement
test::Trafo::duplicate(rootElement) means to invoke:

• the duplicate function taking the contents of the rootElement slot as a parameter

• the function can be found in the Trafo.ext file

• and that in turn is in the classpath, in the testpackage.

5.10.5. The transformation
The transformation, as mentioned above, can be found in the Trafo.ext file in the test package in the src
folder. Let us walk through the file.

So, first we import the metamodel.

import data;

The next function is a so-called create extension. Create extensions, as a side effect when called, create an
instance of the type given after the create keyword. In our case, the duplicate function creates an instance
of DataModel. This newly created object can be referred to in the transformation by this (which is why
this is specified behind the type). Since this can be omitted, we do not have to mention it explicitly in the
transformation.

The function also takes an instance of DataModel as its only parameter. That object is referred to in the
transformation as s. So, this function sets the name of the newly created DataModel to be the name of the original
one, and then adds duplicates of all entities of the original one to the new one. To create the duplicates of the
entities, the duplicate() operation is called for each Entity. This is the next function in the transformation.

create DataModel this duplicate(DataModel s):
 entity.addAll(s.entity.duplicate()) ->
 setName(s.name);

The duplication function for entities is also a create extension. This time, it creates a new Entity for each old
Entity passed in. Again, it copies the name and adds duplicates of the attributes and references to the new one.

create Entity this duplicate(Entity old):
 attribute.addAll(old.attribute.duplicate()) ->
 reference.addAll(old.reference.duplicate()) ->
 setName(old.name);

The function that copies the attribute is rather straight forward, but ...

create Attribute this duplicate(Attribute old):
 setName(old.name) ->
 setType(old.type);

... the one for the references is more interesting. Note that a reference, while being owned by some Entity,
also references another Entity as its target. So, how do you make sure you do not duplicate the target twice?
Xtend provides explicit support for this kind of situation. Create extensions are only executed once per tuple of
parameters! So if, for example, the Entity behind the target reference had already been duplicated by calling the
duplicate function with the respective parameter, the next time it will be called the exact same object will be
returned. This is very useful for graph transformations.

create EntityReference this duplicate(EntityReference old):
 setName(old.name) ->
 setTarget(old.target.duplicate());

For more information about the Xtend language please see the Xtend reference documentation.

Xpand / Xtend / Check Reference

46

6. Xpand2
The Xpand language is used in templates to control the output generation. This documentation describes the general
syntax and semantics of the Xpand language.

Typing the guillemets (« and ») used in the templates is supported by the Eclipse editor, which provides keyboard
shortcuts with Ctrl+< and Ctrl+>.

6.1. Template files and encoding
Templates are stored in files with the extension .xpt. Template files must reside on the Java classpath of the
generator process.

Almost all characters used in the standard syntax are part of ASCII and should therefore be available in any
encoding. The only limitation are the tag brackets (guillemets), for which the characters "«" (Unicode 00AB) and
"»" (Unicode 00BB) are used. So for reading templates, an encoding should be used that supports these characters
(e.g. ISO-8859-1 or UTF-8).

Names of properties, templates, namespaces etc. must only contain letters, numbers and underscores.

6.2. General structure of template files
Here is a first example of a template:

«IMPORT meta::model»
«EXTENSION my::ExtensionFile»

«DEFINE javaClass FOR Entity»
 «FILE fileName()»
 package «javaPackage()»;

 public class «name» {
 // implementation
 }
 «ENDFILE»
«ENDDEFINE»

A template file consists of any number of IMPORT statements, followed by any number of EXTENSION
statements, followed by one or more DEFINE blocks (called definitions).

6.3. Statements of the Xpand language

6.3.1. IMPORT
If you are tired of always typing the fully qualified names of your types and definitions, you can import a namespace
using the IMPORT statement.

«IMPORT meta::model»

This one imports the namespace meta::model. If your template contains such a statement, you can use the
unqualified names of all types and template files contained in that namespace. This is similar to a Java import
statement import meta.model.*.

6.3.2. EXTENSION
Metamodels are typically described in a structural way (graphical, or hierarchical, etc.) . A shortcoming of this
is that it is difficult to specify additional behaviour (query operations, derived properties, etc.). Also, it is a good
idea not to pollute the metamodel with target platform specific information (e.g. Java type names, packages, getter
and setter names, etc.).

Extensions provide a flexible and convenient way of defining additional features of metaclasses. You do this by
using the Xtend language.

An EXTENSION import points to the Xtend file containing the required extensions:

«EXTENSION my::ExtensionFile»

Note that extension files have to reside on the Java classpath, too. Therefore, they use the same namespace
mechanism (and syntax) as types and template files.

Xpand / Xtend / Check Reference

47

6.3.3. DEFINE
The central concept of Xpand is the DEFINE block, also called a template. This is the smallest identifiable unit
in a template file. The tag consists of a name, an optional comma-separated parameter list, as well as the name of
the metamodel class for which the template is defined.

«DEFINE templateName(formalParameterList) FOR MetaClass»
 a sequence of statements
«ENDDEFINE»

To some extend, templates can be seen as special methods of the metaclass. There is always an implicit this
parameter which can be used to address the "underlying" model element; in our example above, this model element
is of type "MetaClass".

As in Java, a formal parameter list entry consists of the type followed by the name of that parameter.

The body of a template can contain a sequence of other statements including any text.

A full parametric polymorphism is available for templates. If there are two templates with the same name that are
defined for two metaclasses which inherit from the same superclass, Xpand will use the corresponding subclass
template, in case the template is called for the superclass. Vice versa, the template of the superclass would be used
in case a subclass template is not available. Note that this not only works for the target type, but for all parameters.
Technically, the target type is handled as the first parameter.

So, let us assume you have the following metamodel:

Figure 1. Sample metamodel

Assume further, you would have a model which contains a collection of A, B and C instances in the property
listOfAs. Then, you can write the following template:

«DEFINE someOtherDefine FOR SomeMetaClass»
 «EXPAND implClass FOREACH listOfAs»
«ENDDEFINE»

«DEFINE implClass FOR A»
 // this is the code generated for the superclass A
«ENDDEFINE»

«DEFINE implClass FOR B»
 // this is the code generated for the subclass B
«ENDDEFINE»

«DEFINE implClass FOR C»
 // this is the code generated for the subclass C
«ENDDEFINE»

So for each B in the list, the template defined for B is executed, for each C in the collection the template defined
for C is invoked, and for all others (which are then instances of A) the default template is executed.

6.3.4. FILE
The FILE statement redirects the output generated from its body statements to the specified target.

«FILE expression [outletName]»
 a sequence of statements

Xpand / Xtend / Check Reference

48

«ENDFILE»

The target is a file in the file system whose name is specified by the expression (relative to the specified target
directory for that generator run). The expression for the target specification can be a concatenation (using the
+ operator). Additionally, you can specify an identifier (a legal Java identifier) for the name of the outlet. (See
the configuration section for a description of outlets). To produce the target file into subdirectories use "/" in the
expression result as separator for the directory structure.

The body of a FILE statement can contain any other statements.

Example:

«FILE InterfaceName + ".java"»
 package «InterfacePackageName»;

 /* generated class! Do not modify! */
 public interface «InterfaceName» {
 «EXPAND Operation::InterfaceImplementation FOREACH Operation»
 }
«ENDFILE»

«FILE ImplName + ".java" MY_OUTLET»
 package «ImplPackageName»;

 public class «ImplName» extends «ImplBaseName»
 implements «InterfaceName» {
 //TODO: implement it
 }
«ENDFILE»

6.3.5. EXPAND
The EXPAND statement "expands" another DEFINE block (in a separate variable context), inserts its output at the
current location and continues with the next statement. This is similar in concept to a subroutine call.

«EXPAND definitionName [(parameterList)]
 [FOR expression | FOREACH expression [SEPARATOR expression]] [ONFILECLOSE]»

The various alternative syntaxes are explained below.

6.3.5.1. Names
If the definitionName is a simple unqualified name, the corresponding DEFINE block must be in the same template
file.

If the called definition is not contained in the same template file, the name of the template file must be specified.
As usual, the double colon is used to delimit namespaces.

«EXPAND TemplateFile::definitionName FOR myModelElement»

Note that you would need to import the namespace of the template file (if there is one). For instance, if the template
file resides in the java package my.templates, there are two alternatives. You could either write

«IMPORT my::templates»
...
«EXPAND TemplateFile::definitionName FOR myModelElement»

or

«EXPAND my::templates::TemplateFile::definitionName
 FOR myModelElement»

6.3.5.2. Lazy evaluation
Appending the ONFILECLOSE statement defers evaluation of the expanded definition until the current file is
closed with ENDFILE. This is of use when the state required to create the text is collected during the evaluation
of the processed definition.

«FILE ...»

Xpand / Xtend / Check Reference

49

...
«EXPAND LazyEvaluatedDefinition FOREACH myCollection ONFILECLOSE»
...
«ENDFILE» «REM»Now 'LazyEvaluatedDefinition' is called«ENDFILE»

A typical example for usage of the ONFILECLOSE statement is when you want to create a list of imports in a
Java class, but the types that are used should be added when they are used in the templates later.

The state, usually a collection, that is used for the lazy expanded evaluation must be valid until the file is closed.
This can be achieved in two ways:

• Span a LET statement around the FILE statement that bounds an empty collection

«LET (List[MyType]) {} AS importedTypes»
«FILE ...»
...
«EXPAND ImportStatement FOREACH importedTypes ONFILECLOSE»
...
«importedTypes.add(someType) -> ""-»
...
«ENDFILE»
«ENDLET»

• Use a create extension which returns an empty collection and append elements to it. Since it is a create extension
the empty collection will be returned on first call and for each subsequent call a reference to this collection will
be returned and not a new collection created.

Example:

some/path/InsertionPoints.ext:

create List[Type] importedTypes (SomeType context) : (List[Type]) {};

In Xpand use this as follows:

«EXTENSION some::path::InsertionPoints»
«FILE ...»
...
«EXPAND ImportStatement FOREACH importedTypes() ONFILECLOSE»
...
«importedTypes().add(someType) -> ""-»
...
«ENDFILE»
«ENDLET»

6.3.6. FOR vs. FOREACH
If FOR or FOREACH is omitted the other template is called FOR this.

«EXPAND TemplateFile::definitionName»

equals

«EXPAND TemplateFile::definitionName FOR this»

If FOR is specified, the definition is executed for the result of the target expression.

«EXPAND myDef FOR entity»

If FOREACH is specified, the target expression must evaluate to a collection type. In this case, the specified
definition is executed for each element of that collection.

«EXPAND myDef FOREACH entity.allAttributes»

An EvaluationException will be thrown if the specified target expression cannot be evaluated to an existing
element of the instantiated model or no suitable DEFINE block can be found.

6.3.6.1. Specifying a Separator
If a definition is to be expanded FOREACH element of the target expression it is possible to specify a SEPARATOR
expression:

Xpand / Xtend / Check Reference

50

«EXPAND paramTypeAndName FOREACH params SEPARATOR ','»

The result of the separator expression will be written to the output between each evaluation of the target definition.
Not after each one, but rather only in between two elements. This comes in handy for things such as comma-
separated parameter lists.

6.3.7. FOREACH
This statement expands the body of the FOREACH block for each element of the target collection that results from
the expression. The current element is bound to a variable with the specified name in the current context.

«FOREACH expression AS variableName [ITERATOR iterName] [SEPARATOR expression]»
 a sequence of statements using variableName to access the
 current element of the iteration
«ENDFOREACH»

The body of a FOREACH block can contain any other statements; specifically FOREACH statements may be nested.

If ITERATOR name is specified, an object of the type xpand2::Iterator (see API doc for details) is
accessible using the specified name.

The SEPARATOR expression works in the same way as the one for EXPAND.

Example:

«FOREACH {'A','B','C'} AS c ITERATOR iter SEPARATOR ','»
 «iter.counter1» : «c»
«ENDFOREACH»

The evaluation of the above statement results in the following text:

1 : A,
2 : B,
3 : C

6.3.8. IF
The IF statement supports conditional expansion. Any number of ELSEIF statements is allowed. The ELSE
block is optional. Every IF statement must be closed with an ENDIF. The body of an IF block can contain any
other statement, specifically, IF statements may be nested.

«IF expression»
 a sequence of statements
[«ELSEIF expression»]
 a sequence of statements]
[«ELSE»
 a sequence of statements]
«ENDIF»

6.3.9. PROTECT
Protected Regions are used to mark sections in the generated code that shall not be overridden again by the
subsequent generator run. These sections typically contain manually written code.

«PROTECT CSTART expression CEND expression ID expression (DISABLE)?»
 a sequence of statements
«ENDPROTECT»

The values of CSTART and CEND expressions are used to enclose the protected regions marker in the output. They
should build valid comment beginning and comment end strings corresponding to the generated target language
(e.g. "/*" and "*/" for Java).

The following is an example for Java:

«PROTECT CSTART "/*" CEND "*/" ID ElementsUniqueID»
 here goes some content
«ENDPROTECT»

The ID is set by the ID expression and must be globally unique (at least for one complete pass of the generator).
To assure this these IDs are usually concatenated. Some model types (e.g. UML2 models) contain identifiers that
could be used, which can be read using the xmlId() function from stdlib.

Xpand / Xtend / Check Reference

51

Generated target code looks like this:

public class Person {
/*PROTECTED REGION ID(Person) ENABLED START*/
 This protected region is enabled, therefore the contents will
 always be preserved. If you want to get the default contents
 from the template you must remove the ENABLED keyword (or even
 remove the whole file :-))
/*PROTECTED REGION END*/
}

Protected regions are generated in enabled state by default. Unless you manually disable them, by removing the
ENABLED keyword, they will always be preserved.

If you want the generator to generate disabled protected regions, you need to add the DISABLE keyword inside
the declaration:

«PROTECT CSTART '/*' CEND '*/' ID this.name DISABLE»

The produced target code won't contain the ENABLED flag then. In this case ENABLED has to be added to the
target region to activate the protected region. Disabling protected regions by default has the advantage that the
protected region default content in the template can be changed and all not yet activated regions would contain
the changed code after regeneration.

6.3.10. LET
LET lets you specify local variables:

«LET expression AS variableName»
 a sequence of statements
«ENDLET»

During the expansion of the body of the LET block, the value of the expression is bound to the specified variable.
Note that the expression will only be evaluated once, independent from the number of usages of the variable within
the LET block.

Example:

«LET packageName + "." + className AS fqn»
 the fully qualified name is: «fqn»;
«ENDLET»

The variable value can not be reassigned within a LET block.

6.3.11. ERROR
The ERROR statement aborts the evaluation of the templates by throwing an XpandException with the
specified message.

«ERROR expression»

Note that you should use this facility very sparingly, since it is better practice to check for invalid models using
constraints on the metamodel, and not in the templates!

6.3.12. Comments
Comments are only allowed outside of tags.

«REM»
 text comment
«ENDREM»

Comments may not contain a REM tag, this implies that comments are not nestable. A comment may not have a
white space between the REM keyword and its brackets.

Example:

«REM»«LET expression AS variableName»«ENDREM»
 a sequence of statements
«REM» «variableName.stuff»
«ENDLET»«ENDREM»

Xpand / Xtend / Check Reference

52

6.3.13. Expression Statement
Expressions support processing of the information provided by the instantiated metamodel. Xpand provides
powerful expressions for selection, aggregation, and navigation. Xpand uses the expressions sublanguage in almost
any statement that we have seen so far. The expression statement just evaluates the contained expression and writes
the result to the output (using the toString() method of java.lang.Object). Example:

public class «this.name» {

All expressions defined by the expressions sublanguage are also available in Xpand. You can invoke imported
extensions. (See the Expressions and Xtend language reference for more details).

6.3.14. Controlling generation of whitespace
If you want to omit the output of superfluous whitespace you can add a minus sign just before any closing bracket.

Example:

«FILE InterfaceName + ".java"-»
«IF hasPackage-»
package «InterfacePackageName»;
«ENDIF-»
...
«ENDFILE»

The generated file would start with two new lines (one after the FILE and one after the IF statement) if the minus
characters had not been set.

In general, this mechanism works as follows: If a statement (or comment) ends with such a minus all preceding
whitespace up to the newline character (excluded!) is removed. Additionally all following whitespace including
the first newline character (\r\n is handled as one character) is also removed.

6.4. Aspect-Oriented Programming in Xpand
Using the workflow engine it is now possible to package (e.g. zip) a written generator and deliver it as a kind of
black box (this is often called a cartridge). If you want to use such a generator but need to change some small
generation stuff, you can make use of the AROUND aspects.

«AROUND qualifiedDefinitionName(parameterList)? FOR type»
 a sequence of statements
«ENDAROUND»

AROUND lets you add templates in an non-invasive way (you do not need to touch the generator templates). Because
aspects are invasive, a template file containing AROUND aspects must be wrapped by configuration (see next
section).

6.4.1. Join Point and Point Cut Syntax
AOP is basically about weaving code into different points inside the call graph of a software module. Such points
are called Join Points. In Xpand, there is only one join point so far: a call to a definition.

You specify on which join points the contributed code should be executed by specifying something like a 'query'
on all available join points. Such a query is called a point cut.

«AROUND [pointcut]»
 do stuff
«ENDAROUND»

A point cut consists of a fully qualified name, parameter types and the target type.

6.4.1.1. Definition Name
The definition name part of a point cut must match the fully qualified name of the join point definition. Such
expressions are case sensitive. The asterisk character is used to specify wildcards.

Some examples:

my::Template::definition // definitions with the specified name
org::eclipse::xpand2::* // definitions prefixed with 'org::eclipse::xpand2::'

Xpand / Xtend / Check Reference

53

Operation // definitions containing the word 'Operation' in it.
* // all definitions

6.4.1.2. Parameter Types
The parameters of the definitions we want to add our advice to, can also be specified in the point cut. The rule is
that the type of the specified parameter must be the same or a supertype of the corresponding parameter type (the
dynamic type at runtime!) of the definition to be called.

Additionally, one can set a wildcard at the end of the parameter list, to specify that there might be an arbitrary
number of parameters of any kind.

Some examples:

my::Templ::def() // templ def without parameters
my::Templ::def(String s) // templ def with exactly one parameter
 // of type String
my::Templ::def(String s,*) // templ def with one or more parameters,
 // where the first parameter is of type String
my::Templ::def(*) // templ def with any number of parameters

6.4.1.3. Target Type
Finally, we have to specify the target type. This is straightforward:

my::Templ::def() FOR Object// templ def for any target type
my::Templ::def() FOR Entity// templ def objects of type Entity

6.4.2. Proceeding
Inside an advice, you might want to call the underlying definition. This can be done using the implicit variable
targetDef, which is of the type xpand2::Definition and which provides an operation proceed()that invokes
the underlying definition with the original parameters (Note that you might have changed any mutable object in
the advice before).

If you want to control which parameters are to be passed to the definition, you can use the operation proceed
(Object target, List params). Please keep in mind that no type checking is done in this context.

Additionally, there are some inspection properties (like name, paramTypes, etc.) available.

6.5. Generator Workflow Component
This section describes the workflow component that is provided to perform the code generation, i.e. run the
templates. You should have a basic idea of how the workflow engine works. A simple generator component
configuration could look as follows:

<component class="org.eclipse.xpand2.Generator">
 <fileEncoding value="ISO-8859-1"/>
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfMetaModel">
 <metaModelPackage value="org.eclipse.emf.ecore.EcorePackage"/>
 </metaModel>
 <expand value="somenamespace::example::Java::all FOR myModel"/>

 <!-- aop configuration -->
 <advices value='somenamespace::example::Advices1, example::Advices2'/>

 <!-- output configuration -->
 <outlet path='main/src-gen'>
 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>
 <postprocessor class="org.eclipse.xtend.typesystem.xsd.XMLBeautifier"/>
 </outlet>
 <outlet name='TO_SRC' path='main/src' overwrite='false'>
 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>
 <postprocessor class="org.eclipse.xtend.typesystem.xsd.XMLBeautifier"/>
 </outlet>

 <!-- optional: protected regions configuration -->
 <prSrcPaths value="main/src"/>
 <prDefaultExcludes value="false"/>
 <prExcludes value="*.xml"/>

Xpand / Xtend / Check Reference

54

</component>

Now, let us go through the different properties one by one.

6.5.1. Main configuration
The first thing to note is that the qualified Java name of the component is
org.eclipse.xpand2.Generator.

6.5.2. Encoding
For Xpand it is important to have the file encoding in mind because of the guillemet characters « » used to delimit
keywords and property access. The fileEncoding property specifies the file encoding to use for reading the
templates, reading the protected regions and writing the generated files. This property defaults to the default file
encoding of your JVM.

In a team that uses different operating systems or locales it is a good idea to set the file encoding fixed for the
Xpand project and share the settings. Typical encodings used are UTF-8 or ISO-8859-1, but any encoding having
guillemet brackets is fine also.1

An false encoding can result in an error message of the generator during runtime:

1108 ERROR WorkflowRunner - [ERROR]: no viable alternative at input 'Â' on line 1

In this case you have to configure the input encoding. A ResourceManager is used to set the input encoding.
Use the fileEncoding property of the ResourceManager inside the generator component to configure the
encoding of templates and extensions.

Example for MWE:

<component class="org.eclipse.xpand2.Generator">
 <metaModel idRef="mm_emf"/>
 <expand
 value="template::Template::main FOR model" />
 <outlet path="${src-gen}" >
 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier" />
 </outlet>
 <resourceManager class ="org.eclipse.xtend.expression.ResourceManagerDefaultImpl">
 <fileEncoding value="ISO-8859-1"/>
 </resourceManager>
</component>

Example for MWE2:

component = org.eclipse.xpand2.Generator {
 metaModel = org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel {}
 expand = "templates::Template::main FOREACH model"
 outlet = {
 path = targetDir
 }
 resourceManager = org.eclipse.xtend.expression.ResourceManagerDefaultImpl {
 fileEncoding = "ISO-8859-1"
 }
}

The section Output configuration describes how to configure the encoding of the generated files.

6.5.3. Metamodel
The property metaModel is used to tell the generator engine on which metamodels the Xpand templates should
be evaluated. One can specify more than one metamodel here. Metamodel implementations are required by
the expression framework (see Expressions) used by Xpand2. In the example above we configured the Ecore
metamodel using the EMFMetaModel implementation shipped with the core part of the Xpand release.

A mandatory configuration is the expand property. It expects a syntax similar to that of the EXPAND statement
(described above). The only difference is that we omit the EXPAND keyword. Instead, we specify the name of
the property.

1On Mac OSX the default encoding is MacRoman, which is not a good choice, since other operating systems are not aware of this encoding.
It is recommended to set the encoding to some more common encoding, e.g. UTF-8, maybe even for the whole workspace.

Xpand / Xtend / Check Reference

55

Examples:

<expand value="some::namespace::Template::define FOR mySlot"/>

or:

<expand value="some::namespace::Template::define('foo') FOREACH {mySlot1,mySlot2}"/>

The expressions are evaluated using the workflow context. Each slot is mapped to a variable. For the examples
above the workflow context needs to contain elements in the slots 'mySlot', 'mySlot1' and 'mySlot2'. It
is also possible to specify some complex expressions here. If, for instance, the slot myModel contains a collection
of model elements one could write:

<expand value="some::namespace::Template::define FOREACH myModel.typeSelect(Entity)"/>

This selects all elements of type Entity contained in the collection stored in the myModel slot.

6.5.4. Output configuration
The second mandatory configuration is the specification of so called outlets (a concept borrowed from
AndroMDA). Outlets are responsible for writing the generated files to disk.

Example MWE:

<component class="org.eclipse.xpand2.Generator">
 ...
 <outlet path='main/src-gen'/>
 <outlet name='TO_SRC' path='main/src' overwrite='false'>
 <fileEncoding value='ISO-8859-1'/>
 </outlet>
 <fileEncoding value='ISO-8859-1'/>
 ...
</component>

Example MWE2:

component = org.eclipse.xpand2.Generator {
 metaModel = org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel {}
 expand = "templates::Template::main FOREACH model"
 outlet = {path = 'main/src-gen'}
 outlet = {
 name='TO_SRC'
 path='main/src'
 overwrite= false
 fileEncoding = 'ISO-8859-1'
 }
 fileEncoding = 'ISO-8859-1'
 ...
}

In the examples there are two outlets configured. The first one has no name and is therefore handled as the default
outlet. Default outlets are triggered by omitting an outlet name:

«FILE 'test/note.txt'»
this goes to the default outlet
«ENDFILE»

The configured base path is 'main/src-gen', so the file from above would go to 'main/src-gen/test/
note.txt'.

The second outlet has a name ('TO_SRC') specified. Additionally the flag overwrite is set to false (defaults
to true). The following Xpand fragment

«FILE 'test/note.txt' TO_SRC»
this goes to the TO_SRC outlet
«ENDFILE»

would cause the generator to write the contents to 'main/src/test/note.txt' if the file does not already
exist (the overwrite flag).

Another option called append (defaults to false) causes the generator to append the generated text to an existing
file. If overwrite is set to false this flag has no effect.

Xpand / Xtend / Check Reference

56

The encoding of the generated files can be configured at two different levels. A file encoding can be defined for
the complete generator component. Therefore the fileEncoding property inside the component definition has to
be used (see the examples above). You can also define a file encoding at outlet level. Therefore the fileEncoding
property inside the outlet definition has to be used.

6.5.5. PostProcessor
Beautifying the generated code is a good idea. It is very important that generated code looks good, because
developers should be able to understand it. On the other hand template files should look good, too. It is thus best
practice to write nice looking template files and not to care how the generated code looks - and then you run a
beautifier over the generated code to fix that problem. Of course, if a beautifier is not available, or if white space
has syntactical meaning (as in Python), you would have to write your templates with that in mind (using the minus
character before closing brackets as described in a preceding section).

The Xpand workflow component can be configured with multiple beautifiers:

<outlet ...>
 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>
 <postprocessor class="org.eclipse.xtend.typesystem.xsd.XMLBeautifier"/>
</outlet>

These are the two beautifiers delivered with Xpand. If you want to use your own beautifier, you would just need
to implement the PostProcessor Java interface:

package org.eclipse.xpand2.output;

public interface PostProcessor {
 public void beforeWriteAndClose(FileHandle handle);
 public void afterClose(FileHandle handle);
}

The beforeWriteAndClose method is called for each ENDFILE statement.

PostProcessors can also be used for othermeans than formatting, like line counting.

6.5.5.1. JavaBeautifier
The JavaBeautifier is based on the Eclipse Java formatter provides base beautifying for Java files.

6.5.5.2. XmlBeautifier
The XmlBeautifier is based on dom4j and provides a single option fileExtensions (defaults to ".xml, .xsl,
.wsdd, .wsdl") used to specify which files should be pretty-printed.

6.5.5.3. CppBeautifier
The CppBeautifier leverages CDT for formatting C/C++ sources. Thus CDT is required to use this code formatter.
To use this beautifier the plugin org.eclipse.xpand.support.cdt must be added to the plugin dependencies.

6.5.6. Protected Region Configuration
Finally, you need to configure the protected region resolver, if you want to use protected regions.

<prSrcPaths value="main/src"/>
<prDefaultExcludes value="false"/>
<prExcludes value="*.xml"/>

The prSrcPathsproperty points to a comma-separated list of directories. The protected region resolver will scan
these directories for files containing activated protected regions.

There are several file names which are excluded by default:

RCS, SCCS, CVS, CVS.adm, RCSLOG, cvslog.*, tags, TAGS, .make.state, .nse_depinfo, *~, #*,
.#*, ',*', _$*,*$, *.old, *.bak, *.BAK, *.orig, *.rej, .del-*, *.a, *.olb, *.o, *.obj,
 *.so, *.exe, *.Z,* .elc, *.ln, core, .svn

If you do not want to exclude any of these, you must set prDefaultExcludes to false.

<prDefaultExcludes value="false"/>

If you want to add additional excludes, you should use the prExcludes property.

Xpand / Xtend / Check Reference

57

<prExcludes value="*.xml,*.hbm"/>

It is bad practice to mix generated and non-generated code in one artifact. Instead of using protected
regions, you should try to leverage the extension features of the used target language (inheritance,
inclusion, references, etc.) wherever possible. It is very rare that the use of protected regions is an
appropriate solution.

6.5.7. VetoStrategy
The Xpand engine will generate code for each processed FILE statement. This implies that files are written that
might not have changed to the previous generator run. Normally it does not matter that files are rewritten. There
are at least two good reasons when it is better to avoid rewriting of files:

1. The generated source code will be checked in. In general it is not the recommended way to go to check in
generated code, but sometimes you will have to. Especially with CVS there is the problem that rewritten files
are recognized as modified, even if they haven't changed. So the problem arises that identical files get checked
in again and again (or you revert it manually). When working in teams the problem even becomes worse, since
team members will have conflicts when checking in.

2. When it can be predicted that the generator won't produce different content before a file is even about to be
created by a FILE statement then this can boost performance. Of course it is not trivial to predict that a specific
file won't result in different content before it is even created. This requires information from a prior generator
run and evaluation against the current model to process. Usually a diff model would be used as input for the
decision.

Case 1) will prevent file writing after a FILE statement has been evaluated, case 2) will prevent creating a file at all.

To achieve this it is possible to add Veto Strategies to the generator,
which are implementations of interface org.eclipse.xpand2.output.VetoStrategy or
org.eclipse.xpand2.output.VetoStrategy2. Use VetoStrategy2 if you implement your own.

VetoStrategy2 declares two methods:

• boolean hasVetoBeforeOpen (FileHandle)

This method will be called before a file is being opened and generated. Return true to suppress the file creation.

• boolean hasVeto (FileHandle)

This method will be called after a file has been produced and after all configured PostProcessors have been
invoked. Return true to suppress writing the file.

Veto Strategies are configured per Outlet. It is possible to add multiple stratgy instances to each Outlet.

 <component id="generator" class="org.eclipse.xpand2.Generator" skipOnErrors="true">
 <metaModel class="org.eclipse.xtend.typesystem.uml2.UML2MetaModel"/>
 <expand value="templates::Root::Root FOR model"/>
 <fileEncoding value="ISO-8859-1"/>
 <outlet path="src-gen">
 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>
 <vetoStrategy class="org.eclipse.xpand2.output.NoChangesVetoStrategy"/>
 </outlet>
 </component>

One VetoStrategy is already provided. The
org.eclipse.xpand2.output.NoChangesVetoStrategy is a simple implementation that will
compare the produced output, after it has been postprocessed, with the target file. If the content is identical the
strategy vetoes the file writing. This strategy is effective, but has two severe drawbacks:

1. The file has been created at least in memory before. This consumes time and memory. If applying code
formatting this usually implies that the file is temporarily written.

2. The existing file must be read into memory. This also costs time and memory.

Much better would be to even prevent the creation of files by having a valid implementation for the
hasVetoBeforeOpen() method. Providing an implementation that predicts that files do not have to be created
requires domain knowledge, thus a standard implementation is not available.

The number of skipped files will be reported by the Generator component like this:

2192 INFO - Generator(generator): generating <...>

Xpand / Xtend / Check Reference

58

3792 INFO - Skipped writing of 2 files to outlet [default](src-gen)

6.6. Example for using Aspect-Oriented Programming in Xpand
This example shows how to use aspect-oriented programming techniques in Xpand templates. It is applicable to
EMF based and Classic systems. However, we explain the idea based on the emfExample. Hence you should read
that before.

6.7. The Problem
There are many circumstances when template-AOP is useful. Here are two examples:

Scenario 1: Assume you have a nice generator that generates certain artifacts. The generator (or cartridge) might be
a third party product, delivered in a single JAR file. Still you might want to adapt certain aspects of the generation
process without modifying the original generator.

Scenario 2: You are building a family of generators that can generate variations of the generate code, e.g.
Implementations for different embedded platforms. In such a scenario, you need to be able to express those
differences (variabilities) sensibly without creating a non-understandable chaos of if statements in the templates.

6.8. Example
To illustrate the idea of extending a generator without "touching" it, let us create a new project called
org.eclipse.demo.emf.datamodel.generator-aop. The idea is that it will "extend" the original
org.eclipse.demo.emf.datamodel.generator project introduced in the emfExample. So this new
projects needs to have a project dependency to the former one.

6.8.1. Templates
An AOP system always needs to define a join point model; this is, you have to define, at which locations of a
(template) program you can add additional (template) code. In Xpand, the join points are simply templates (i.e.
DEFINE .. ENDDEFINE) blocks. An "aspect template" can be declared AROUND previously existing templates.
If you take a look at the org.eclipse.demo.emf.datamodel.generator source folder of the project,
you can find the Root.xpt template file. Inside, you can find a template called Impl that generates the
implementation of the JavaBean.

«DEFINE Entity FOR data::Entity»
 «FILE baseClassFileName() »
 // generated at «timestamp()»
 public abstract class «baseClassName()» {
 «EXPAND Impl»
 }
 «ENDFILE»
«ENDDEFINE»

«DEFINE Impl FOR data::Entity»
 «EXPAND GettersAndSetters»
«ENDDEFINE»

«DEFINE Impl FOR data::PersistentEntity»
 «EXPAND GettersAndSetters»
 public void save() {

 }
«ENDDEFINE»

What we now want to accomplish is this: Whenever the Impl template is executed, we want to run an additional
template that generates additional code (for example, some kind of meta information for a given framework. The
specific code at this place is not important for the example here).

So, in our new project, we define the following template file:

«AROUND Impl FOR data::Entity»
 «FOREACH attribute AS a»
 public static final AttrInfo «a.name»Info = new AttrInfo(
 "«a.name»", «a.type».class);
 «ENDFOREACH»
 «targetDef.proceed()»

Xpand / Xtend / Check Reference

59

«ENDAROUND»

So, this new template wraps around the existing template called Impl It first generates additional code and then
forwards the execution to the original template using targetDef.proceed(). So, in effect, this is a BEFORE
advice. Moving the proceed statement to the beginning makes it an AFTER advice, omitting it, makes it an
override.

6.8.2. Workflow File
Let us take a look at the workflow file to run this generator:

<workflow>
 <cartridge file="workflow.mwe"/>
 <component adviceTarget="generator"
 id="reflectionAdvice"
 class="org.eclipse.xpand2.GeneratorAdvice">
 <advices value="templates::Advices"/>
 </component>
</workflow>

Mainly, what we do here, is to call the original workflow file. It has to be available from the classpath. After this
cartridge call, we define an additional workflow component, a so called advice component. It specifies generator
as its adviceTarget. That means, that all the properties we define inside this advice component will be added to
the component referenced by name in the adviceTarget instead. In our case, this is the generator. So, in effect,
we add the <advices value="templates::Advices" /> to the original generator component (without
invasively modifying its own definition). This contributes the advice templates to the generator.

6.8.3. Running the new generator
Running the generator produces the following code:

public abstract class PersonImplBase {
 public static final AttrInfo
 nameInfo = new AttrInfo("name", String.class);
 public static final AttrInfo
 name2Info = new AttrInfo("name2", String.class);
 private String name;
 private String name2;

 public void setName(String value) {
 this.name = value;
 }

 public String getName() {
 return this.name;
 }

 public void setName2(String value) {
 this.name2 = value;
 }

 public String getName2() {
 return this.name2;
 }
}

6.9. More Aspect Orientation
In general, the syntax for the AROUND construct is as follows:

«AROUND fullyQualifiedDefinitionNameWithWildcards
 (Paramlist (*)?) FOR TypeName»
 do Stuff
«ENDAROUND»

Here are some examples:

«AROUND *(*) FOR Object»

matches all templates

Xpand / Xtend / Check Reference

60

«AROUND *define(*) FOR Object»

matches all templates with define at the end of its name and any number of parameters

«AROUND org::eclipse::xpand2::* FOR Entity»

matches all templates with namespace org::eclipse::xpand2:: that do not have any parameters and whose type
is Entity or a subclass

«AROUND *(String s) FOR Object»

matches all templates that have exactly one String parameter

«AROUND *(String s,*) FOR Object»

matches all templates that have at least one String parameter

«AROUND my::Template::definition(String s) FOR Entity»

matches exactly this single definition

Inside an AROUND, there is the variable targetDef, which has the type xpand2::Definition. On this
variable, you can call proceed, and also query a number of other things:

«AROUND my::Template::definition(String s) FOR String»
 log('invoking '+«targetDef.name»+' with '+this)
 «targetDef.proceed()»
«ENDAROUND»

7. Profiler
The ProfilerComponent allows you to measure the time each check, Xtend function or Xpand define needed to
be executed in your workflow. It does so by acting as a callback of the CheckComponent, XtendComponent and
XpandComponent where the time of each call will be stored in a profiling model. From this data the profiler
eventually derives execution times with and without children, callers/callees with the corresponding call counts
and finally a call graph with respect to recursive calls. A set of Xpand templates can transform the model to an
HTML report or a text file in the GNU GProf format.

Figure 2. Sample HTML output of the profiler

Use the ProfilerComponent to wrap other components inside a workflow. Denote a resultSlot where the profiler
stores the model in the end. Then, refer to this component via idRef as a callback. As soon as the component-tag

Xpand / Xtend / Check Reference

61

of the profiler closes, it stores the derived profiling model in the given slot. You are free to transform this model
or you can re-use one of the templates that come with profiler.

<component id="profiler" class="org.eclipse.xtend.profiler.ProfilerComponent">
 <resultSlot value="profilingResult" />

 <component class="org.eclipse.xtend.check.CheckComponent">
 <vetoableCallback idRef="profiler" />
 ...
 </component>
 <component class="org.eclipse.xtend.XtendComponent">
 <vetoableCallback idRef="profiler" />
 ...
 </component>
 <component class="org.eclipse.xpand2.Generator">
 <vetoableCallback idRef="profiler" />
 ...
 </component>
</component>

<component class="org.eclipse.xpand2.Generator" fileEncoding="ISO-8859-1">
 <metaModel idRef="mm"/>
 <expand value="org::eclipse::xtend::profiler::templates::Html::Main FOR profilingResult"/>
 <outlet overwrite="true" path="profiling"/>
</component>

Currently, there are two different templates available to render the profiling model

• org::eclipse::xtend::profiler::templates::Html::Main

• org::eclipse::xtend::profiler::templates::GProf::Main

The Xpand Wizard will produce a workflow called workflowWithProfiler.mwe that demonstrates the capabilities
of the profiler. It puts the result in the folder profiling.

62

Chapter 3. Built-in types API
documentation
1. Object

Supertype: none

Table 1. Properties

Type Name Description

xpand2::Type metaType returns this object's meta type.

Table 2. Operations

Return type Name Description

Boolean == (Object)

Boolean < (Object)

String toString () returns the String representation
of this object. (Calling Java's
toString() method)

Boolean <= (Object)

Boolean != (Object)

Boolean > (Object)

Integer compareTo (Object) Compares this object with the
specified object for order. Returns
a negative integer, zero, or a
positive integer as this object is less
than, equal to, or greater than the
specified object.

Boolean >= (Object)

2. String
Supertype: Object

Table 3. Properties

Type Name Description

Integer length the length of this string

Table 4. Operations

Return type Name Description

String toLowerCase () Converts all of the characters in this
String to lower case using the rules
of the default locale (from Java)

String + (Object) concatenates two strings

List toCharList () splits this String into a List[String]
containing Strings of length 1

Built-in types API documentation

63

Return type Name Description

String toFirstUpper () Converts the first character in this
String to upper case using the rules
of the default locale (from Java)

String subString (Integer,
Integer)

Returns a new string that is a
substring of this string.

String trim () Returns a copy of the string, with
leading and trailing whitespace
omitted. (from Java 1.4)

String toFirstLower () Converts the first character in this
String to lower case using the rules
of the default locale (from Java)

String toUpperCase () Converts all of the characters in this
String to upper case using the rules
of the default locale (from Java)

List split (String) Splits this string around matches of
the given regular expression (from
Java 1.4)

Boolean startsWith (String) Tests if this string starts with the
specified prefix.

Boolean matches (String) Tells whether or not this string
matches the given regular
expression. (from Java 1.4)

Integer asInteger () Returns an Integer object holding
the value of the specified String
(from Java 1.5)

Boolean contains (String) Tests if this string contains
substring.

Boolean endsWith (String) Tests if this string ends with the
specified prefix.

String replaceFirst (String,
String)

Replaces the first substring of
this string that matches the given
regular expression with the given
replacement.

String replaceAll (String,
String)

Replaces each substring of this
string that matches the given
regular expression with the given
replacement.

3. Integer
Supertype: Real

This type does not define any properties.

Table 5. Operations

Return type Name Description

List upTo (Integer) returns a List of Integers starting
with the value of the target
expression, up to the value of the
specified Integer, incremented by
one, e.g. '1.upTo(5)' evaluates to
{1,2,3,4,5}

Built-in types API documentation

64

Return type Name Description

Boolean >= (Integer)

Boolean == (Integer)

Boolean != (Integer)

List upTo (Integer, Integer) returns a List of Integers starting
with the value of the target
expression, up to the value of the
first paramter, incremented by the
second parameter, e.g. '1.upTo(10,
2)' evaluates to {1,3,5,7,9}

Integer - (Integer)

Integer + (Integer)

Boolean <= (Integer)

Boolean < (Integer)

Integer * (Integer)

Integer - ()

Boolean > (Integer)

Integer / (Integer)

4. Boolean
Supertype: Object

This type does not define any properties.

Table 6. Operations

Return type Name Description

Boolean ! ()

5. Real
Supertype: Object

This type does not define any properties.

Table 7. Operations

Return type Name Description

Real * (Real)

Boolean >= (Object)

Boolean <= (Object)

Real - ()

Boolean == (Object)

Boolean != (Object)

Boolean < (Object)

Real - (Real)

Real / (Real)

Boolean > (Object)

Real + (Real)

Built-in types API documentation

65

6. Collection
Supertype: Object

Table 8. Properties

Type Name Description

Boolean isEmpty returns true if this Collection is
empty

Integer size returns the size of this Collection

Table 9. Operations

Return type Name Description

Boolean contains (Object) returns true if this collection
contains the specified object.
otherwise false. returns this
Collection.

List toList () converts this collection to List

Set toSet () converts this collection to Set

List flatten () returns a flattened List.

Set intersect (Collection) returns a new Set, containing only
the elements contained in this and
the specified Collection

String toString (String) concatenates each contained
element (using toString()),
separated by the specified String.

Collection removeAll (Collection) removes all elements contained in
the specified collection from this
Collection if contained (modifies
it!). returns this Collection.

Collection remove (Object) removes the specified element
from this Collection if contained
(modifies it!). returns this
Collection.

Set without (Collection) returns a new Set, containing all
elements from this Collection
without the elements from specified
Collection

Collection addAll (Collection) adds all elements to the Collection
(modifies it!). returns this
Collection.

Collection add (Object) adds an element to the Collection
(modifies it!). returns this
Collection.

Set union (Collection) returns a new Set, containing all
elements from this and the specified
Collection

Boolean containsAll (Collection) returns true if this collection
contains each element contained in
the specified collection. otherwise
false. returns this Collection.

Built-in types API documentation

66

7. List
Supertype: Collection

This type does not define any properties.

Table 10. Operations

Return type Name Description

List withoutFirst ()

Object last ()

Integer indexOf (Object)

List withoutLast ()

Collection reverse ()

Object first ()

Object get (Integer)

8. Set
Supertype: Collection

This type does not define any properties.

This type does not define any operations.

9. xpand2::Type
Supertype: Object

Table 11. Properties

Type Name Description

String name

Set allStaticProperties

String documentation

Set superTypes

Set allProperties

Set allFeatures

Set allOperations

Table 12. Operations

Return type Name Description

xpand2::StaticProperty getStaticProperty
(String)

xpand2::Feature getFeature (String, List)

Boolean isInstance (Object)

xpand2::Property getProperty (String)

Object newInstance ()

Boolean isAssignableFrom
(xpand2::Type)

xpand2::Operation getOperation (String,
List)

Built-in types API documentation

67

10. xpand2::Feature
Supertype: Object

Table 13. Properties

Type Name Description

String name

xpand2::Type returnType

String documentation

xpand2::Type owner

This type does not define any operations.

11. xpand2::Property
Supertype: xpand2::Feature

This type does not define any properties.

Table 14. Operations

Return type Name Description

Void set (Object, Object)

Object get (Object)

12. xpand2::Operation
Supertype: xpand2::Feature

This type does not define any properties.

Table 15. Operations

Return type Name Description

List getParameterTypes ()

Object evaluate (Object, List)

13. xpand2::StaticProperty
Supertype: xpand2::Feature

This type does not define any properties.

Table 16. Operations

Return type Name Description

Object get () returns the static value

14. Void
Supertype: Object

This type does not define any properties.

This type does not define any operations.

15. xtend::AdviceContext
Supertype: Object

Built-in types API documentation

68

Table 17. Properties

Type Name Description

List paramTypes

String name

List paramNames

List paramValues

Table 18. Operations

Return type Name Description

Object proceed (List)

Object proceed ()

16. xpand2::Definition
Supertype: Object

Table 19. Properties

Type Name Description

List paramTypes

String name

List paramNames

xpand2::Type targetType

Table 20. Operations

Return type Name Description

Void proceed ()

String toString ()

Void proceed (Object, List)

17. xpand2::Iterator
Supertype: Object

Table 21. Properties

Type Name Description

Boolean lastIteration

Boolean firstIteration

Integer elements

Integer counter0

Integer counter1

This type does not define any operations.

69

Chapter 4. Stdlib
1. Introduction

Xpand delivers a set of small useful utility extensions and components in the org.eclipse.xpand.util.stdlib package.
You need to add a dependency to this plugin if you want to use it.

2. Stdlib extensions
This section describes the components and extensions provided by Stdlib. We use the shortcut xpand.util.stdlib...
for component classes in package org.eclipse.xtend.util.stdlib in workflow configurations for convenience.

Note that many functions of the Stdlib make use of static variables in their Java implementation, thus the values
are kept through a complete MWE workflow. Also, because of the static implementation, the features are not
threadsafe.

2.1. IO extensions
This is an extremely useful library to print information to the logging facility. It is really valuable through
transformation processes or for complex expressions to know what exactly expressions are evaluated to.

Extension: org::eclipse::xtend::util::stdlib::io

2.1.1. debug (Object o)
Logs an object with DEBUG level to the logger.

Parameters:

• o - The object to dump.

Returns: The object o

2.1.2. info (Object o)
Logs an object with INFO level to the logger.

Parameters:

• o - The object to dump.

Returns: The object o

2.1.3. error (Object o)
Logs an object with ERROR level to the logger.

Parameters:

• o - The object to dump.

Returns: The object o

2.1.4. syserr (Object o)
Prints an object to System.err.

Parameters:

• o - The object that should be printed. null is allowed.

Returns: The object o

2.1.5. syserr (Object o, String prefix)
Prints an object to System.err.

Parameters:

• o - The object that should be printed. null is allowed.

Stdlib

70

• prefix - A prefix string for the message.

Returns: The object o

2.1.6. syserr (Object o)
Prints an object to System.err.

Parameters:

• o - The object that should be printed. null is allowed.

Returns: The object o

2.1.7. throwError (Object o)
Throws an IllegalStateMessage.

Parameters:

• o - The exception message.

Returns: Nothing, since an exception is thrown.

2.1.8. String includeFile (String filePath, String encoding)
Reads the content of a file.

Parameters:

• filePath - Path to the file

encoding - File encoding to use for reading

Returns: File content.

2.1.9. String includeFile (String filePath)
Reads the content of a file.

Parameters:

• filePath - Path to the file

Returns: File content.

2.1.10. Examples

import data;
extension org.eclipse.xtend.util.stdlib::io;
create DataModel this duplicate(DataModel s):
 entity.addAll(s.entity.duplicate()) ->
 setName(s.name);

create Entity this duplicate(Entity old):
 (old.name+" has "+old.reference.size+" references").info() ->
 old.reference.name.info() ->

This leads to the following output on the console:

922 INFO - Person has 1 references
923 INFO - [autos]
926 INFO - Vehicle has 0 references
926 INFO - []

Of course IO extension functions can also be used within Xpand, but if used for logging purposes you have to deal
with one side effect: Since the functions return the passed object (the result of an expression, in the simplest case
just a string) and Xpand prints out expression results to the opened file, the message will be shown on the console,
but also be in the result file. This you might want to avoid, so you can use a small trick for this: after calling a log
function use the chaining operator and let the result of the expression be an empty string:

«EXTENSION org::eclipse::xtend::util::stdlib::io»

Stdlib

71

...
«DEFINE javaClass FOR Entity»
 «REM»The following expression will dump the feature names without producing output
 as side effect«ENDREM»
 «features.name.info() -> ""»

This will produce this output on the console:

1122 INFO IOExtensions - [name, age, address]
1740 INFO IOExtensions - [street, zip, city]

Each function returns the object on which they have been called, so you can build chain expressions. Or, in other
words, if you have some expression like

element.x.y.z.select(t|t.someProp).a

you can always embed one of these io functions anywhere such as in

element.x.syserr().y.z.select(t|t.someProp.info()).a

2.1.11. Controlling the log level
You may want to control the logging level for the messages which are printed via the logging facility. How this
is configured in detail depends on the underlying logging framework. Xpand uses the Apache Commons Logging
library, which may dispatches to another logging framework, mostly Log4J.

To control the logging level exactly for the IO extensions you have to know the category to which the messages
are logged to. It is common to use the class names of the classes that use the logger. In the case of the IO extensions
this class is org.eclipse.xtend.util.stdlib.IOExtensions .

The following example shows a Log4J configuration file which would disable log levels below warning. This
example would only work if the properties file is found at the beginning of the classpath. Make sure that
the file would be found before any other Log4J configurations on your classpath. The file must be named
log4j.properties.

log4j.appender.CONSOLE = org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.layout = org.apache.log4j.PatternLayout
log4j.appender.CONSOLE.layout.ConversionPattern = %p %C{1} %m %n
log4j.rootLogger = INFO, CONSOLE
suppress info messages from IOExtensions
log4j.logger.org.eclipse.xtend.util.stdlib.IOExtensions=WARN, CONSOLE
log4j.additivity.org.eclipse.xtend.util.stdlib.IOExtensions=false

2.2. Counter extensions
Sometimes it is necessary to have counters within transformation code. The counter extensions enable to initialize,
manipulate and retrieve counters.

Extension: org::eclipse:xtend:::util::stdlib::counter

2.2.1. int counterInc (Object o)
Increments a counter.

Parameters:

• o - A key for this counter. If this function is called with a null argument an anonymous counter is used. If no
counter was registered for the key a new counter instance will be created and initialized with 0.

Returns: The incremented counter.

2.2.2. int counterDec (Object o)
Decrements a counter.

Parameters:

• o - A key for this counter. If this function is called with a null argument an anonymous counter is used. If no
counter was registered for the key a new counter instance will be created and initialized with 0.

Returns: The decremented counter.

Stdlib

72

2.2.3. int counterReset (Object o)
Resets a counter.

Parameters:

• o - A key for this counter. If this function is called with a null argument an anonymous counter is used. If no
counter was registered for the key a new counter instance will be created and initialized with 0.

Returns: Allways 0.

2.2.4. int counterGet (Object o)
Retrieves the current state of a counter.

Parameters:

• o - A key for this counter. If this function is called with a null argument an anonymous counter is used.

Returns: Current counter value.

2.2.5. Example

«DEFINE CounterExtensionsDemo FOR Object»
«FILE "CounterExtensions.txt"»
 First counter:
 get : «counterGet()»
 inc : «counterInc()»
 inc : «counterInc()»
 inc : «counterInc()»
 dec : «counterDec()»
 Second (named) counter:
 inc : «counterInc("idx")»
 inc : «counterInc("idx")»
 inc : «counterInc("idx")»
 reset : «counterReset("idx")»
 inc : «counterInc("idx")»
 First counter:
 inc : «counterInc()»

«ENDFILE»
«ENDDEFINE»

This example will create the following output:

 First counter:
 get : 0
 inc : 1
 inc : 2
 inc : 3
 dec : 2
 Second (named) counter:
 inc : 1
 inc : 2
 inc : 3
 reset : 0
 inc : 1
 First counter:
 inc : 3

2.3. Properties extensions
You might want to specify configuration values from properties files from your transformation code. The
Properties extensions can help you there. Before being able to access the properties through an extension
function the properties files must be read and its values stored. This is done through the workflow component
PropertiesReader, which is described below.

Extension: org::eclipse::xtend::util::stdlib::properties

2.3.1. String getProperty (String key)
Retrieves a configuration property.

Stdlib

73

Parameters:

• o - Property key

Returns: Property value, if defined, else null.

2.3.2. Workflow component
The workflow component PropertiesReader is used to load properties files. It is possible to configure multiple
properties files by adding the propertiesFile tag multiple times.

Table 1. Workflow component org.eclipse.xtend.util.stdlib.PropertiesReader

Property Type Mandatory Description

propertiesFile String yes The properties file to read

2.3.3. Example
Workflow configuration:

<component class="org.eclipse.xtend.util.stdlib.PropertiesReader">
 <propertiesFile value="src/config1.properties"/>
 <propertiesFile value="src/config2.properties"/>
</component>

config1.properties:

shapes = box,polygon,ellipse,point

Usage in an extension:

extension org::eclipse::xtend::util::stdlib::properties;

cached List[String] SHAPES () : getProperty("shapes").split(",").trim();

2.4. Element properties extensions
This allows you to temporarily associate name-value pairs with any model element.

Extension: org::eclipse::xtend::util::stdlib::elementprops

2.4.1. Void setProperty (Object element, String name, Object value)
Sets the property named name to the value.

Parameters:

• element - The model element

• name - Property name

• element - The property value

Returns: Nothing.

2.4.2. Object getProperty (Object element, String name)
Retrieves a dynamic property from an element.

Parameters:

• element - The model element

• name - Property name

Returns: The property value.

2.5. Issues extensions
In template code there is no direct access to the Issues instance of the workflow's context possible. The Issues
extensions help to report warnings and errors to the Issues instance during transformation.

Stdlib

74

This should not encourage you to use constraint checking and generally raise errors directly from within the
transformations. However, sometimes it is sensible and useful to be able to do that.

Extension: org::eclipse::xtend::util::stdlib::issues

2.5.1. String reportWarning (String message)
Reports a warning message to the workflow context.

Parameters:

• message - A message

Returns: The message.

2.5.2. String reportWarning (Object object, String message)
Reports a warning message and the qualified name of a context object to the workflow context.

Parameters:

• object - A context objectt

• message - A message

Returns: The message.

2.5.3. String reportError (String message)
Reports a error message to the workflow context.

Parameters:

• message - A message

Returns: The message.

2.5.4. String reportError (Object object, String message)
Reports a error message and the qualified name of a context object to the workflow context.

Parameters:

• object - A context object

• message - A message

Returns: The message.

2.5.5. Workflow component
The Issues extensions require that the workflow component
org.eclipse.xtend.util.stdlib.ExtIssueReporter is configured in the workflow before calling
the extensions. The purpose of this component is make the workflow's Issues instance available for the extensions.

The ExtIssueReporter component does not have any properties.

2.5.6. Example
Workflow configuration:

<?xml version="1.0"?>
<workflow>
 ...
 <component class="xpand.util.stdlib.ExtIssueReporter"/>

Using from Xtend:

import metamodel;
extension org::eclipse::xtend::util::stdlib::issues;

demo (Model this) :
 issuesExtensionsDemo()
 ;

Stdlib

75

issuesExtensionsDemo () :
 reportWarning("Reporting a warn message from Xtend to the workflow");

Console output:

INFO WorkflowRunner running workflow: workflow/generator.mwe
...
...
INFO CompositeComponent ExtIssueReporter: setting up issue logging from
 within .ext and .xpt files
INFO WorkflowRunner workflow completed in 1101ms!
WARN WorkflowRunner Reporting a warn message from Xtend to the workflow

2.6. Naming extensions
The Naming extensions are only usable with EMF models. This one helps with names, qualified names and
namespaces. A qualified name is defined as the seuqence of primitive names of the containment hierarchy of an
element, seperated by a dot (e.g. java.lang.String). In order for this to work, model elements are expected to have
a name attribute of type EString.1

Extension: org::eclipse::xtend::util::stdlib::naming

2.6.1. String namespace (Object this)
Returns the namespace, i.e. the qualified name minus the name of the element itself.

Parameters:

• this - A model element

Returns: The qualified namespace name of the element.

2.6.2. String qualifiedName (Object this)
Returns the qualified name (dot separated) of an element by evaluating its containment hierarchy.

Parameters:

• this - A model element

Returns: The qualified name of the element.

2.6.3. String loc (Object this)
Tries to build a useful description of an element in the model; very useful for error reporting.

Parameters:

• this - A model element

Returns: Location information about the element.

2.6.4. Object findByName (Collection candidates, String name)
Searches the candidates for an element with a specific name.

Parameters:

• candidates - A collection of model elements

• name - The searched element name

Returns: The searched element or null if no element with that name is contained in the candidates collection.

2.7. Globalvar extensions
Sometimes you might want to share information within a transformation process. One alternative is the use of
GLOBALVAR expressions, but this needs that the variables are configured in the workflow. The Globalvar
extensions help to store and retrieve objects within a transformation process.

Extension: org::eclipse::xtend::util::stdlib::globalvar

1It is intended that the uml2ecore utility can add such a name attribute to every meta class automatically.

Stdlib

76

2.7.1. Example
Usage in Xtend:

import metamodel;
extension org::eclipse::xtend::util::stdlib::io;
extension org::eclipse::xtend::util::stdlib::globalvar;

demo (Model this) :
 globalvarExtensionsDemo1() ->
 globalvarExtensionsDemo2()
;

globalvarExtensionsDemo1 () :
 "Storing global var...".info() ->
 storeGlobalVar("msg", "Xpand is cool stuff!");

globalvarExtensionsDemo2 () :
 ("Getting message from global var: "+getGlobalVar("msg")).info();

Console output:

INFO IOExtensions Storing global var...
INFO IOExtensions Getting message from global var: Xpand is cool stuff!

This a simple example storing a string, but of course you can store the result of any expression this way.

2.8. Cloning extensions
The cloning utilities help you to clone a model element and all its children. The clone(Object) function
clones a single object and its children, whereas the clone(List) clones a list of elements. The semantics of
cloning is as follows:

• the object passed in as a parameter is duplicated

• all objects referenced via containment references are also duplicated, recursively

• the values of the attributes are duplicated

• non-containing references to other objects are copied while the target is not cloned (a reference to the original
is created in the new object)

Extension: org::eclipse::xtend::util::stdlib::cloning

2.8.1. Object clone (Object original)
Clones an object.

Parameters:

• original - The object that should be cloned.

Returns: The cloned object.

2.8.2. List clone (List l)
Clones a list of objects.

Parameters:

• l - Source list.

Returns: The list of cloned objects.

2.9. Cross references extensions
Sometimes there is the need to find objects that reference a specific object. This extension helps to solve this
recurring task. This extension can only be used for EMF based models.

Extension: org::eclipse::xtend::util::stdlib::crossref

2.9.1. List[EObject] getReferencingObjects(EObject target)
Retrieves objects that reference a given object.

Stdlib

77

Parameters:

• target - The target object.

Returns: A list of objects referencing the target.

2.9.2. Example
Usage in Xtend:

extension org::eclipse::xtend::util::stdlib::crossref;
crossRefDemo (Model this) :
 eAllContents.typeSelect(Datatype).dumpCrossReferences();

dumpCrossReferences (Datatype this) :
 ("Number of cross references to datatype "+name+":"
 + getReferencingObjects().size)
 .info()
 ;

Console output:

INFO IOExtensions Number of cross references to datatype Integer:1
INFO IOExtensions Number of cross references to datatype String:4

2.10. UID extensions
Often it is required to create and retrieve unique identifiers for objects through the transformation process. The
UID extensions provide a simple mechanism for this task. Unique identifiers are calculated from the current system
time plus an internal counter. The extensions therefore only guarantee that the identifier stays the same within one
workflow execution, but will change through different runs. If you need to have unique identifiers that stay the
same over every generation run (e.g. for Protected Regions Ids) then you need another mechanism.

If you are loading the model that assigns IDs to EObject (only for EMF based models) the xmlId() function
will be useful. Especially when using UML2 models this function will return a unique and non-changing identifier
for objects.

Extension: org::eclipse::xtend::util::stdlib::uid

2.10.1. cached String uid(Object o)
Retrieves an unique identifier for an object. Creates a new one on first access.

Parameters:

• o - A model element or other object.

Returns: The UID for this object

2.10.2. String createUID(Object o)
Creates a unique identifier for an object.

Parameters:

• o - A model element or other object.

Returns: A newly created UID for this object.

2.10.3. String xmlId (ecore::EObject o)
Retrieves an object's identifier. The object must be read from a XMLResource.

Parameters:

• o - An object.

Returns: The object's id. Returns null if the object was not load from a XMLResource.

2.11. Mixin extensions
These utilities help with mixin models. Mixin models are typically simple models that provide additional
information about model elements in a source model of a transformation. They can be seen as annotations.

Stdlib

78

These utilities expect that the mixin models have a very specific structure: A root element, and then any subtree,
where the elements have a name attribute. Here's an example:

Figure 1. Mixin model example

The mixin elements are ControllingServiceRefSpec and BundleSpec. They are owned by the root
element, Cbd2OsgiMixin. The name is expected to contain the qualified name of the element the annotation
refers to. Once the model is set up like this, and made available to a transformation using the workflow's
GLOBALVAR facilities, you can then use the extension functions.

Extension: org::eclipse::xtend::util::stdlib::mixin

2.11.1. Object getMandatoryMixin(Object mixinModel, Object ctx, xpand2::Type t)
Returns the corresponding mixin element for the context object; the mixin must be of type t and its name attribute
must correspond to the qualified name of the context. If none is found, a workflow ERROR is raised and a null
object is returned (so you can call additional operations on it without getting a null evaluation error).

Parameters:

• mixinModel - The root element of the mixin model.

• ctx - The context object.

• t - The type of the mixin model element.

Returns: The mixin model element corresponding to ctx.

2.11.2. Object getOptionalMixin(Object mixinModel, Object ctx, xpand2::Type t)
Same as getMandatoryMixin(), but does not raise an error in case nothing is found.

2.12. Tracing extensions
The tracing extensions allow to create trace paths during your model transformations. This is done by creating
a trace model which holds references from source to target elements. Traces must be added explicitly to the
transformation code.

Extension: org::eclipse::xtend::util::stdlib::tracing

2.12.1. Void createTrace(Object from, Object to, String kind, String backKind)
Creates a trace between two elements.

Parameters:

Stdlib

79

• from - Source element.

• to - Target element.

• kind - Name for the trace from source to target.

• backkind - Name for the trace from target back to source.

Returns: Nothing.

2.12.2. Void createTrace(Object from, Object to, String kind)
Creates a trace between two elements.

Parameters:

• from - Source element.

• to - Target element.

• kind - Name for the trace from source to target.

Returns: Nothing.

2.12.3. Void clearTrace()
Clears all traces.

Parameters: none

Returns: Nothing.

2.12.4. Object getSingleTraceTarget(Object from, String kind)
Finds the target of a trace. This function will report an error if no trace for the source element to the target of the
specified kind can be found.

Parameters:

• from - Source element.

• kind - Trace kind name.

Returns: The target element of that trace.

2.12.5. Boolean hasTrace(Object from, String kind)
Proves if a trace of a specific kind exists for some element.

Parameters:

• from - Source element.

• kind - Trace kind name.

Returns: true, if a trace of that kind exists for the element.

3. Stdlib workflow components
Besides the extensions described in the previous section Xpand's Stdlib provides some workflow components.

3.1. SystemCommand
This component executes a system command.

Table 2. Workflow component org.eclipse.xtend.util.stdlib.SystemCommand

Property Type Mandatory Description

command String yes The command to execute.

directory String no Execution directory.

arg String no (multiple) command arguments

env String no (multiple) additional environment entries. Format:
[key],[value]

Stdlib

80

Example:

<component class="org.eclipse.xtend.util.stdlib.SystemCommand">
 <directory value="src-gen"/>
 <command value="sh"/>
 <arg value="processdot.sh"/>
</component>

Console output:

1639 INFO - Running command '[sh, processdot.sh]' in directory [absolutepath] ...
1667 INFO - processing shape_box.dot ...
2597 INFO - processing shape_polygon.dot ...
...
3564 INFO - Execution of command was successful.

Windows tip:

When executing a command on windows this is typically done with the cmd as command value. It is important
that the command terminates, therefore the argument /c must be appended as arg value.2

3.2. SlotCopier
This component copies an element from one slot to another. The slot content is not cloned.

Table 3. Workflow component org.eclipse.xtend.util.stdlib.SlotCopier

Property Type Mandatory Description

fromSlot String yes Source slot name.

toSlot String yes Destination slot name.

removeTopLevelListboolean no If true the source slot must contain a list and the top
level list is removed (i.e. the first element from the list
is copied to the destination slot), otherwise it is not
removed.

Example:

<component class="org.eclipse.xtend.util.stdlib.SlotCopier">
 <fromSlot value="model"/>
 <toSlot value="target"/>
</component>

Console output:

INFO SlotCopier copying org.eclipse.emf.ecore.impl.DynamicEObjectImpl@1fdbef
 (eClass: org.eclipse.emf.ecore.impl.EClassImpl@fc5b01
 (name: Model) (instanceClassName: null) (abstract: false, interface: false))
 [org.eclipse.emf.ecore.impl.DynamicEObjectImpl]

3.3. SlotListAdder
This component copies an element from one slot to a list contained in another slot.

Table 4. Workflow component org.eclipse.xtend.util.stdlib.SlotListAdder

Property Type Mandatory Description

modelSlot String yes Source slot name.

listSlot String yes Target slot name. This slot contains a list of elements.

uniqueNames boolean no If true, names have to be unique, otherwise not. Requires
that modelSlot contains an EObject.

Example:

2See http://www.ss64.com/nt/cmd.html, http://www.java-forum.org/de/viewtopic.php?p=469059

http://www.ss64.com/nt/cmd.html
http://www.java-forum.org/de/viewtopic.php?p=469059

Stdlib

81

This example adds the content of slot 'model' to the slot 'targetList'. The slot 'targetList' does not contain anything
at the time of execution.

<component class="org.eclipse.xtend.util.stdlib.SlotListAdder">
 <modelSlot value="model"/>
 <listSlot value="targetList"/>
</component>

Console output:

INFO CompositeComponent SlotListAdder: adding contents of slot 'model' to the list of
 stuff in 'targetList'
...
...
INFO WorkflowRunner workflow completed in 1503ms!
WARN WorkflowRunner 'targetList' is empty, creating a new list.
 [org.eclipse.xtend.util.stdlib.SlotListAdder@7536e7]

Note that the warn messages will appear after the workflow finished, since they are reported as a workflow warn
issue.

3.4. SlotPrinter
This component prints a workflow context slot content to the log. This can be useful for debugging purposes.

Table 5. Workflow component org.eclipse.xtend.util.stdlib.SlotPrinter

Property Type Mandatory Description

slotName String yes The name of a slot whose content should be dumped.

message String no An optional message that will be prefixed to the log
output.

level String no The log level for the message. Valid values are TRACE,
DEBUG, INFO, WARN.

Example:

<component class="org.eclipse.xtend.util.stdlib.SlotPrinter">
 <slotName value="model"/>
 <message value="DUMP"/>
 <level value="INFO"/>
</component>

Console output:

INFO SlotPrinter DUMP: (slot: model)org.eclipse.emf.ecore.impl.DynamicEObjectImpl@d22ddb
 (eClass: org.eclipse.emf.ecore.impl.EClassImpl@fe0ce9 (name: Model) (instanceClassName: null)
 (abstract: false, interface: false))

82

Chapter 5. Xpand Eclipse Integration
1. Introduction

This document describes the various functionalities that the Xpand plugins contribute to the Eclipse installation.
It is intended as user instruction for the work with Eclipse. You need to read other documentation to understand
the Xpand framework itself.

2. Installation
It is assumed that you already have installed the Xpand core and the Xpand UI feature from the update site as
described in the Installation documentation.

3. Overview
The Xpand UI plugins provide editors for the different languages and a launch shortcut to start workflow files.
Let us first have a look at the different Xpand specific files.

4. File decorations
When you open Eclipse and import a project into the workspace you can see several file decorating images.

There are specific images for:

• Workflow files (.mwe extension)

• Xpand2 templates (.xpt extension)

• Extension files (.ext extension)

• Check constraints (.chk extension)

5. Editors
When you double-click on one of the above mentioned file types, special editors will open that provide appropriate
syntax coloring.

5.1. Syntax coloring
Here are examples for the Xpand editor:

for the Extensions editor:

Xpand Eclipse Integration

83

and for Check editor:

5.2. Code completion
The Editors provide extensive code completion support by pressing Ctrl + Space similar to what is known from
the Java editor. Available types, properties, and operation, as well as extensions from .ext files will be found.
The Xpand editor provides additionally support for the Xpand language statements.

5.3. Xpand tag delimiter creation support
In the Xpand editor there is an additional keystroke available to create the opening and closing tag brackets, the
guillemets ("«" and "»").

Ctrl + < creates "«"

Ctrl + > creates "»"

6. Preference pages

6.1. Metamodel contributors
Xpand supports several types of meta-metamodels.

From older versions, the classic UML metamodels may be known. Currently also JavaBeans metamodels and
EMF based metamodels are supported out of the box.

Additional metamodel contributors can be registered through an extension point.

The editors need to know with what kind of metamodels you are working. Therefore, one can configure the
metamodel contributors on workspace and on project level.

6.2. Global preferences
If you work always with the same type of metamodels, you can specify the metamodel contributors in the global
preference page. It is available under Windows --> Preferences in the Xtend/Xpand section.

Xpand Eclipse Integration

84

6.3. Preferences per project
In the project property page there is also an Xtend/Xpand section available.

Therein you can enable the Xtend/Xpand nature (see below) and set project specific metamodel contributor
settings.

7. Xpand Nature and Xpand Builder
You have seen in the last screenshot that you can switch the Xpand nature on. If you do so, you enable analyzer
support for all Xpand specific file types in that project.

7.1. Problem markers
During the build process, all found problems are marked in the editors as well as listed in the Problems view.

Xpand Eclipse Integration

85

In the current implementation analyzes take place when Eclipse runs an incremental or full build. That means,
problem markers are actualized when a file is saved, for instance. If you are in doubt about the actuality of problem
markers, you should clean your project and let it rebuild again.

Note that if you change signatures of e.g. extensions the referencing artifacts (Xpand templates, etc.) are not
analyzed automatically.

8. Running a workflow
You can start a workflow by right clicking on a workflow file (*.mwe) and selecting Run As → MWE workflow.

Xpand Eclipse Integration

86

Because it is a normal launch configuration, you could run or even debug it using the normal Eclipse functionality.

87

Chapter 6. Incremental Generation
As projects become larger, so typically do their models. However, the larger the models are, the longer the code
generation process takes. In a mature project, a developer typically changes only a small part of a large model.
Performing a full code generation process for the whole model slows down the development cycle considerably
due to various factors:

• The whole model must be traversed, and each statement in the Xpand templates must be executed. The larger
the model is and the more Xpand templates you have, the higher the negative impact is.

• All generated files are written to disk. The I/O operation itself is one major contributor to the overall elapsed
time. What's more, files are typically post-processed by beautifiers, which is another time consuming operation.
If you are working with protected regions, the impact is even more dramatic.

• Since every file has a new timestamp after code generation, typically a compiler will pick up these new files
and start compilation, which adds more CPU and I/O cycles to the process.

Considering that for a small change in the model only a fraction of the generated files actually do change their
contents, performing a full generation is obviously a waste of time.

Beginning with the Helios release train (Eclipse 3.6, Xpand 0.8), Xpand now ships with an incremental generation
facility. This works very similar to the incremental Java compiler in Eclipse. It detects which parts of a model
have changed since the last generation process. It then determines which files need to be generated due to that
change and which are unaffected by it. Only the former are the regenerated, while the latter remain untouched.

The following sections explain how this incremental generation feature works and how you can use it.

1. Technical Background
The key to incremental generation lies in knowing which element in a model was used to generate which file.
This information can easily be computed during generation, by tracking which parts of the model are accessed
in the context of any given «FILE» statement. A callback for the Xpand generator does this job and builds up
a so-called trace model on-the-fly.

The second important information is the actual change that has occurred in a model. There are basically two ways
to compute this. One is to attach a change listener when editing the model and capture the change as it happens.
The other way is to keep a backup copy of the model and compare the old version with the current version to
compute the change. See Section 3.2, “Performance Considerations” for pros and cons of each of the two ways.
In either case, the result is a so-called diff model.

When we know which parts of a model have changed, and we also know which files have been produced based
upon these parts of the model, we can then skip the generation of all other files, thus performing incremental
generation.

2. Using Incremental Generation

2.1. The Incremental Generation Facade
The easiest way to benefit from incremental generation is to use the IncrementalGenerationFacade workflow
component:

<workflow>
 <component id="incremental"
 class="org.eclipse.xpand2.incremental.IncrementalGenerationFacade">
 <newModelFile value="path/to/your/model.file" />
 <oldModelFile value="path/to/backup/model.file" />
 <traceModelFile value="path/to/store/trace/model.trace" />
 <outlet path="path/to/your/outlet/" overwrite="true"/>
 </component>

 <component id="generator" class="org.eclipse.xpand2.Generator">
 <expand value="your::template::Root FOR model" />
 <outlet path="temp/" overwrite="true"/>
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel" />
 <vetoableCallback idRef="incremental" />

Incremental Generation

88

 </component>
</workflow>

The IncrementalGenerationFacade takes four parameters:

• The newModelFile is the file path where the model to generate is stored. This file is stored in a model slot
named model

• The oldModelFile is the file path where a copy of the previous state of the model is stored. The model is
automatically copied to this location after the generation process and kept between generator invocations.

• The traceModelFile is the file path where the trace model of the generation process is stored between generator
invocations.

• A regular outlet list that must match the one given for the regular generator invocation.

The IncrementalGenerationFacade component must then be passed as a vetoableCallback parameter to the
invocation of the Xpand Generator.

With the simple workflow given above, you should be able to observe that for any given change in the model,
only the files affected by that change are regenerated, while all others remain untouched. Even deleting elements
will result in specific (previously generated) files being deleted from the hard disk.

Note that you have to use file paths for all models because they are physically copied on the hard disk. Passing
locations that can only be resolved from the classpath is not possible.

2.2. The Incremental Generation Callback
While the IncrementalGenerationFacade is easy to use, it is rather restricted in its capabilities and fixed in the
operations it performs. Using the IncrementalGenerationCallback gives you more control over the steps involved.
A typical workflow for incremental generation needs to perform the following tasks:

1. Read the (current) model into a slot.

2. Read the previous state of the model into another slot. This may, of course, not exist, e.g. for the very first
invocation. Full generation must be performed in this case.

3. Compute the changes between the two versions of the model (if possible) and put that diff model into a slot.

4. Read the trace model computed during the previous generator invocation and put it into a slot. As with the old
state of the model, this may not exist, which also leads to full generation.

5. Initialize the IncrementalGenerationCallback with the diff model and the trace model.

6. Run the Xpand Generator component with the IncrementalGenerationCallback.

7. Clean obsolete files, i.e. files that need to be deleted because the corresponding elements in the model have
been deleted.

8. Write the new trace model computed during code generation to the hard disk so that it is available for the next
generation process.

9. Make a backup copy of the model so that it can be compared with the next version upon subsequent generator
invocation.

This is a sample workflow that performs all these steps:

<workflow>
 <!-- read new model -->
 <component id="modelreader" class="org.eclipse.emf.mwe.utils.Reader"
 uri="model/my.model"
 firstElementOnly="true"
 modelSlot="model"
 />
 <!-- read old model, copied from previous run. may not exist, so ignore missing model -->
 <component id="oldmodelreader" class="org.eclipse.emf.mwe.utils.Reader"
 uri="temp/old.model"
 firstElementOnly="true"
 ignoreMissingModel="true"
 modelSlot="oldmodel"
 />

 <!-- compute diff. -->

Incremental Generation

89

 <component id="compare" class="org.eclipse.xpand2.incremental.compare.EmfCompare"
 oldModelSlot="oldmodel"
 newModelSlot="model"
 diffModelSlot="diff"
 />

 <!-- read trace model, produced by previous run. may not exist, so ignore missing model -->
 <component id="tracemodelreader" class="org.eclipse.emf.mwe.utils.Reader"
 uri="temp/trace.trace"
 firstElementOnly="true"
 ignoreMissingModel="true"
 modelSlot="oldtrace"
 />

 <!-- this is the actual incremental generation callback -->
 <component id="incremental"
 class="org.eclipse.xpand2.incremental.IncrementalGenerationCallback"
 diffModelSlot="diff"
 oldTraceModelSlot="oldtrace"
 newTraceModelSlot="trace"
 />

 <!-- generate code -->
 <component id="generator" class="org.eclipse.xpand2.Generator">
 <expand value="resources::templates::Test::Test FOR model" />
 <outlet path="somewhere/" overwrite="true"/>
 <metaModel class="org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel" />
 <vetoableCallback idRef="incremental" />
 </component>

 <!-- clean obsolete files -->
 <component id="cleaner" class="org.eclipse.xpand2.incremental.FileCleaner">
 <oldTraceModelSlot value="oldtrace" />
 <newTraceModelSlot value="trace" />
 <outlet path="somewhere/" overwrite="true"/>
 </component>

 <!-- write trace model -->
 <component id="tracemodelwriter" class="org.eclipse.emf.mwe.utils.Writer"
 modelSlot="trace"
 uri="temp/trace.trace"
 />

 <!-- make backup copy of model -->
 <component id="copier" class="org.eclipse.emf.mwe.utils.FileCopy"
 sourceFile="model/my.model"
 targetFile="temp/old.model"
 />
</workflow>

3. Additional Notes

3.1. Limitations
The incremental generation process can only be used with EMF-based models. That's because all intermediate
artifacts (diff model and trace model) which reference the original models are also stored as EMF models. It is
therefore not possible to refer to other model formats. Moreover, you should make sure that your model has stable
IDs for the individual model elements so that the model comparison doesn't run into any ambiguities.

Also note that at the moment, Xpand cannot track access to model elements from JAVA extensions. This can lead
to cases where a change in a specific model element should trigger a specific (set of) file(s) to be regenerated, but
it actually doesn't. That's because Xpand didn't know about the model element being accessed during the original
file generation, so it has no indication that a regeneration is required. For that reason you should try to access your
model as much as possible from Xpand or Xtend, and only resort to JAVA code when it is unavoidable.

3.2. Performance Considerations
The main performance benefits of incremental generation come from not doing things that are not necessary.
Given the workflow from Section 2.2, “The Incremental Generation Callback”, it may seem counterproductive

Incremental Generation

90

to first perform a costly model comparison operation before it can even be determined whether a file has to be
generated or not.

While it is true that model comparison is a very expensive operation, it turns out that it still outweighs the costs
of unnecessarily generating files, even if no postprocessing or subsequent compiler invocation is involved.

That said, it is definitely preferrable to do without a model comparison and rather capture the changes to the model
on-the-fly. So whenever you are working in a controlled environment, you may want to consider a customized
integration of the generator invocation with the model editors.

91

Chapter 7. Improve performance using
the backend

Another approach to improve generation and model transformation performance, is to use the M2T Backend. The
M2T Backend is a new execution engine for model to text (M2T) and model to model (M2M) transformations
that provides:

• compilation of M2T and M2M languages supported on the backend by providing a middleend that translates
the respective language into a Backend abstract syntax tree. This AST is in turn compiled to Java. The compiler
is still experimental.

• Backeend interpreted execution of M2T and M2M languages supported on the backend.

• performance improvement employing lazy string concatenation and aggressive caching

• language interoperability, e.g. mix Xpand with Xtend2

The M2T Backend provides a compiler that compiles resources written in Xpand / Xtend / Check and other
languages supported on the backend to Java. The backend is used as a common platform just like the JVM
is a common platform for multiple languages. Languages supported on the backend are interoperable in same
way as languages supported on the JVM are interoperable. This enables you to import templates, extensions and
transformations written in other languages than Xpand/Xtend/Check and call functions declared therein, e.g. call
an QVT transformation from Xpand. As soon as a middleend for Xtend2 is available, interoperability with old
fashioned Xpand/Xtend/Check will be supported.

Beginning with the Eclipse Helios release (Eclipse 3.6) the M2T Backend is part of M2T Xpand. As of the Eclipse
Indigo release the Backend Compiler has been added.

1. Technical background
The basic idea behind the M2T Backend is to not build a compiler for every language but use an intermediary
"language", i.e. the backend abstract syntax tree, that is compiled into executable Java code. Xpand, Xtend and
Check are translated into a backend AST by so called middleends. Middleends are specific for each language.
Hence, there exists a language specific middleend for each supported language. If a middleend for a certain
language is available, it is compilable into Java code and finally to bytecode using a plain Java Compiler or
automatically during the build Eclipse JDT Compiler. In contrast to the backend language, Xpand, Xtend and
Check are called frontend languages.

The M2T Backend supports functional and aspect oriented programming. Amongst others it supports language
features such as:

• closures

• higher order functions - use any expression as parameters, even function calls

• currying of functions

• multi dispatch - call a function based on the runtime parameter types as in Xpand / Xtend / Check instead of
the statically assigned parameter types as in Java

• guards on functions - constrain the execution of a function to certain conditions defined in the guard

• deferred evaluation of expressions - use the function call as a placeholder and evaluate the expression later

• AOP

• declare functions in Java using several annotations

• Support for multiple typesystems a.k.a metamodels. Currently JavaBeans, EMF, Eclipse UML2 and XSD are
supported.

1.1. How it works in interpreted mode
In interpreted mode the following steps are executed:

• Read a resource, e.g. an Xpand template.

• Find the responsible middleend, that is capable to convert the frontend language AST (e.g. Xpand) into the
backend AST. Whether a middleend can handle the transformation of a certain frontend language AST into

Improve performance using the backend

92

the backend AST, is determined based on the file ending of the resource, e.g ".xpt" and by trying to parse the
resource with the middleends frontend parser.

• Finally, execute the backend AST using the backend.

2. Using the backend

2.1. A quickstart
Before you can start, you need to install the following features:

• Xtend Backend

• Xtend Backend UML2Types

• Xtend Backend XSDTypes

• Xtend Backend Compiler

• Xtend Backend UI (only required by the compiler)

• Xpand Middleend

• Xpand Middleend UI (only required by the compiler)

• Xtend Middleend

• Xtend Middleend UI (only required by the compiler)

Altenatively you may install theXtend Backend SDK and Xpand Middleend SDK

As a quickstart you may use the Xpand Project wizard and select "Generate a sample EMF based Xpand project".
After completion of the wizard you will find the workflow file "generatorWithBackend.mwe" in the "workflow"-
folder. The workflow is ready to use the backend for generation.

2.2. Compiling sources to Java
The compiler can be activated as a builder by adding M2T Backend Compiler nature to the project. This is done
selecting "Configure" > "Add M2T Backend Compiler" from the context menu of the Xpand project. All Xpand/
Xtend/Check resources will then be compiler to Java source files into the "backend-gen" folder of the project.
When selecting "Clean..." from the project menu the Backend Compiler will do a full build, while changing a
Xpand/Xtend/Check resource will compile this resource incrementally.

The compiler is still experimental.

2.3. Executing workflows using the backend
The backend can execute functions and templates that have been compiled to Java or other resources that can be
handled by one of the available middleends. It automatically recognizes compiled resources if available on the
build path and prefers them over native Xpand/Xtend/Check resources.

The best way to execute compiled functions/templates is to use the XpandComponent or XtendComponent. The
name of the function to be called is the same fully qualified name as defined in Xpand/Xtend/Check.

2.3.1. Setting up the backend languages
Before you can use a language like Xpand with the backend, the responsible middleend must be
registered at the backend. This is done with the org.eclipse.xtend.middleend.LanguageSetup.
Middleends are being called a languageContributor here. You can register
any language specific middleend. Language specific middleend implement the interface
org.eclipse.xtend.middleend.plugins.LanguageSpecificMiddleEnd . To register the
Xpand, Xtend and Check middleends, do the following in the workflow before invoking the middleend component
of any of the respective languages:

<component
 class="org.eclipse.xtend.middleend.LanguageSetup">
 <languageContributor
 value="org.eclipse.xtend.middleend.xtend.plugin.OldXtendRegistryFactory"/>
 <languageContributor
 value="org.eclipse.xtend.middleend.xtend.plugin.OldCheckRegistryFactory"/>
 <languageContributor
 value="org.eclipse.xtend.middleend.xpand.plugin.OldXpandRegistryFactory"/>

Improve performance using the backend

93

 </component>

Now that the middleends are registered, you can use the respective middleend workflow components to use the
backend in interpreted mode.

2.3.2. Calling Xpand templates - the generator
The Xpand middleend introduces a new component to be used instead of
org.eclipse.xpand2.Generator to call Xpand templates from a workflow. The component has the same
parameters as the Xpand Generator component. Hence, the following workflow fragment calls the template
template::Template::main:

<component class="org.eclipse.xtend.middleend.xpand.XpandComponent">
 <metaModel idRef="mm_emf"/>
 <expand value="template::Template::main FOR model" />
 <outlet path="${src-gen}" >
 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier" />
 </outlet>
</component>

The component supports all properties of Generator, except collectProfileSummary and
verboseProfileFilename

2.3.3. Executing Check on the backend
Just as the Xpand middleend, the Check middleend also provides a new component to execute checks on
the backend. The component org.eclipse.xtend.check.CheckComponent has to be replaced with
org.eclipse.xtend.middleend.xtend.CheckComponent . The new component uses the same
properties as org.eclipse.xtend.check.CheckComponent. Hence calling checks using the backend
would look like this:

<component class="org.eclipse.xtend.middleend.xtend.CheckComponent">
 <metaModel idRef="mm_emf"/>
 <checkFile value="metamodel::Checks" />
 <emfAllChildrenSlot value="model"/>
</component>

2.3.4. Executing Xtend extensions on the backend
To invoke Xtend extensions from the workflow, the Xtend middleend introduces the new
component org.eclipse.xtend.middleend.xtend.XtendComponent . The new component
provides the same configuration properties as the old one. Hence, you may invoke the extension
extensions::modification::modify using the following workflow fragment:

>component class="org.eclipse.xtend.middleend.xtend.XtendComponent">
 <metaModel idRef="mm_emf"/>
 <invoke value="extensions::modification::modify(model)"/>
</component>

2.4. Implementing functions in Java - the Java Annotations Middleend
Functions may also be contributed by the Java Annotations Middleend to the M2T Backend. The middleend is
implemented by
org.eclipse.xtend.middleend.javaannotations.JavaFunctionClassContributor .
Registration of Java classes is done by calling the method classAsResource with a class.

Functions have qualified names in the backend represented by
org.eclipse.xtend.backend.common.QualifiedName consisting of a namespace and a
simple name. E.g. the Xpand definition template::Template::main has the namespace
template::Template and the simple name main. The String representation of the QualifiedName would be
template::Template::main. When registering Java Defined Functions, normally only the simple name of
a function will be defined as it's name. The simple name is method name. To set the qualified name of a function
use the annotation @M2tQualifiedName. The namespace will be derived from the fully qualified class name.

Per default, all public methods will be registered as functions. To prevent the registration of a method, annotate it
with @M2tNoFunction. You may also use one of the following annotations:

Improve performance using the backend

94

• @M2tCached - use caching

• @M2tPrivateFunction - mark the function as private

• @M2tAroundAdvice(pointcut) - use the method as around advice. The pointcut has the parameters:

• namePattern - a pattern for function names as in Xpand paramTypeNames - an array with patterns of
parameter type names hasVarArgs - true, if the matching functions have any number of parameters after
paramTypeNames the specified in the pointcut

Functions defined by methods of a Java class can be directly called on the facade
org.eclipse.xtend.middleend.javaannotations.JavaAnnotationBackendFacade . Call
the method invoke to invoke functions defined in Java:

invokeFunction(String className, BackendTypesystem
 ts, QualifiedName functionName, List<?> params)

3. Call functions registered at the backend from Java
To call functions registered at the backend use the org.eclipse.xtend.backend.BackendFacade. To
invoke a function on the backend call the method

invoke (ExecutionContext ctx, QualifiedName
 functionName, List<? extends Object> params)

95

Chapter 8. UML2 Adapter
1. Introduction

It is based upon the UML2 2.0 framework of Eclipse and provides a type mapping from the UML 2.1 metamodel
implementation to the Xpand type system. Hence one can access the whole UML2 metamodel from Check, Xtend,
and Xpand. Additionally, and more important, the adapter dynamically maps stereotypes applied to model elements
to Xpand types and tagged values to Xpand properties. You do not have to implement additional Java classes
anymore. Just export your models and applied profiles. That's all!

2. Installation
First you need to install the UML2 feature from eclipse.org:

http://download.eclipse.org/modeling/mdt/updates/releases/

The Xpand uml2adapter is available from the Xpand update site:

http://download.eclipse.org/modeling/m2t/updates/releases/

(Go to the home page of the project and find the current location if either of the sites do not work)

Restart your Eclipse workbench when Eclipse asks you to do so.

3. Setting up Eclipse
You need to configure your project (or the whole workspace) to use the UML2Adapter.

Right-click on the project and choose 'properties' from the pop-up menu. Therein open the 'Xtend/Xpand' tab,
activate the checkboxes Enable project specific settings and add the UML2 profiles metamodel contributor. Use
the Up-button to push the UML2 profiles contributor to the first position.

3.1. Profiles in Eclipse
If you want Eclipse to register your specific profile in order to provide static type checking and code completion
in the editors, the profiles (*.profile.uml or *.profile.uml2) need to be on the classpath of the project (e.g. are
contained in a src folder)

4. Runtime Configuration
At runtime, you just need the org.eclipse.xtend.typesystem.uml2-1.0.0.jar (or later). You can
use the dependency mechanism of Eclipse from the PDE, or copy or reference the respective JAR file directly. It
does not matter, you just have to take care that it is on the classpath.

4.1. Workflow
If you have written some Check, Xtend or Xpand files and now want to execute them, you have to provide the
right configuration.

You need to configure the UML2 metamodel and a profile metamodel for each profile you used directly. A typical
configuration looks like this:

<workflow>
 <bean class="org.eclipse.xtend.typesystem.uml2.Setup" standardUML2Setup="true" />
 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
 ...
 </component>
 <component class="org.eclipse.xpand2.Generator">
 <metaModel class="org.eclipse.xtend.typesystem.uml2.UML2MetaModel"/>
 <metaModel class="org.eclipse.xtend.typesystem.uml2.profile.ProfileMetaModel">
 <profile value="myProfile.profile.uml2"/>
 </metaModel>
 ...
 </component>
<workflow>

http://download.eclipse.org/modeling/mdt/updates/releases/
http://download.eclipse.org/modeling/m2t/updates/releases/

UML2 Adapter

96

Note the bean configuration in the second line. It statically configures the XmiReader to use the right factories
for *.uml and *.uml2 files. This is very important.

If you are invoking several Xpand components, you should use the id / idRef mechanism:

<workflow>
 <bean class="org.eclipse.xtend.typesystem.uml2.Setup" standardUML2Setup="true" />
 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
 ...
 </component>
 <component class="org.eclipse.xpand2.Generator">
 <metaModel id="uml"
 class="org.eclipse.xtend.typesystem.uml2.UML2MetaModel"/>
 <metaModel id="profile"
 class="org.eclipse.xtend.typesystem.uml2.profile.ProfileMetaModel">
 <profile value="myProfile.profile.uml2"/>
 </metaModel>
 ...
 </component>

97

Chapter 9. XSD Adapter
The XSD Adapter allows Xpand to read/write XML files as models and to use XML Schemas (XSDs) as meta
models. This reference provides in-depth details, for a quick and pragmatic introduction see Chapter 11, XSD
Tutorial .

1. Prerequisites
Please take a look at Section 1, “Setup”.

2. Overview
The XSD Adapter performs two major tasks:

1. It converts XML Schemas (XSDs) to Ecore models in a transparent manner, so that the Ecore models are hidden
from the user. This is done in the workflow as well as in the IDE (to allow XSD-aware code completion for
Xtend/Xpand/Check). For details about the mapping see Section 4, “Behind the scenes: Transforming XSD to
Ecore” . For details about the workflow integration see Section 3, “Workflow Components”

2. It extends the EmfMetaModel with concepts that are needed for XSDs. Theses are, for example, support for
feature maps (needed to handle comments, nested text, CDATA and processing instructions), QNames, EMaps
and composed Simpletypes.

3. Workflow Components
The XSD Adapter provides the following workflow components:

3.1. XSDMetaModel
The XSDMetaModel loads the specified XSD, transforms them to Ecore models and makes them available for the
other MWE components. If XSDs include/import other XSDs or if XML files reference XSDs via schemaLocation,
theses XSDs are also loaded (details: Section 5, “How to declare XML Schemas”). The most common scenario
is to declare the XSDMetaModel within an XMLReader:

<component class="org.eclipse.xtend.typesystem.xsd.XMLReader">
 <modelSlot value="model" />
 <uri value="model.xml" />
 <metaModel id="mm" class="org.eclipse.xtend.typesystem.xsd.XSDMetaModel">
 <schemaFile value="metamodel.xsd" />
 <registerPackagesGlobally value="true" />
 </metaModel>
</component>

Another option is to specify an XSDMetaModel independently of other components as a bean:

<bean id="mymetamodel" class="org.eclipse.xtend.typesystem.xsd.XSDMetaModel">
 <schemaFile value="metamodel.xsd" />
</bean>
<component class="org.eclipse.xtend.typesystem.xsd.XMLReader">
 <modelSlot value="model" />
 <uri value="model.xml" />
 <metaModel idRef="mymetamodel" />
</component>

Attention: It can lead to errors when XSDs are loaded multiple times, which can only happen when using multiple
XSDMetaModels within one workflow. The safe way to go is to declare just one XSDMetaModel per workflow
and reference it from all components that need it.

Properties:

• schemaFile: optional, allowed multiple times: Specifies an XSD file which is being loaded. The path can be a
complete URI, or relative to the project root or classpath.

• registerPackagesGlobally: optional, default "false": If true, generated EPackages are registered to
org.eclipse.emf.ecore.EPackage.Registry.INSTANCE, EMF's global package registry.
Warning: when running workflows from your own java code, make sure to remove the generated packages from
the registry before the next run!

XSD Adapter

98

3.2. XMLReader
The XMLReader reads one XML file which is valid according to the XSDs loaded by the XSDMetaModel. The
XML file is loaded as a model and stored in the specified slot. Example:

<component class="org.eclipse.xtend.typesystem.xsd.XMLReader">
 <modelSlot value="model" />
 <uri value="model.xml" />
 <metaModel idRef="mymetamodel" />
</component>

Properties:

• slot: required: The name of the slot which in which the loaded model is stored. Other workflow components
can access the model via referring to this slot.

• uri: required: The file name of the XML file which should be read. Absolute URIs, and pathnames relative to
the project root or to the classpath are valid.

• metaModel: optional: Specifies the XSDMetaModel (see Section 3.1, “ XSDMetaModel ”) for the
XMLReader. In case no XSDMetaModel is specified, an XSDMetaModel with default configuration is
instantiated implicitly. It is important to pay attention that all needed XSDs can be found while the loading
process: Section 5, “How to declare XML Schemas”.

• useDocumentRoot: optional, default "false": Dealing with XML files as models, most people think of the
XML's root element as the model's root object. This is the default used by the XMLReader. But the XML's
root element actually has a parent, the so-called DocumentRoot. Additionally the DocumentRoot contains
comments/processing instructions and CDATA section which appears before or after the XML's root element,
and, most notably, the DocumentRoot contains information about the used namespaces. If useDocumentRoot
is set to true, the XMLReader stores the DocumentRoot-Object instead the XML's root element's object to the
specified slot.

• option: optional, can be specified multiple times: Option specifies a key-value-pair, which is handed
on to the EMF's XMLResource in the loading process. Valid options are documented via JavaDoc in
interface org.eclipse.emf.ecore.xmi.XMLResource . Additionally, the XMLReader supports
these options:

• DEFAULT_NAMESPACE: Specifies a default namespace, in case the XML file does not declare one:

<option key="DEFAULT_NAMESPACE" val="http://www.dlese.org/Metadata/opml" />

• NAMESPACE_MAP: Specifies a mapping for namespaces, which is applied when loading XML files.

<option key="NAMESPACE_MAP">
 <val class="org.eclipse.xtend.typesystem.xsd.lib.MapBean">
 <mapping from="http://www.eclipse.org/modeling/xpand/example/model/wrong"
 to="http://www.eclipse.org/modeling/xpand/example/model/loadcurve" />
 </val>
</option>

3.3. XMLWriter
The XMLWriter writes the model stored in a slot to an XML file. If the slot contains a collection of models,
each one is written to a separate file. The model(s) must have been instantiated using an XSD-based meta model.
Example:

<component class="org.eclipse.xtend.typesystem.xsd.XMLWriter">
 <metaModel idRef="svgmm" />
 <modelSlot value="svgmodel" />
 <uri value="src-gen/mycurve.svg" />
</component>

Properties:

• slot: required: The name of the slot which holds the model or the collection of models which shall be serialized
to XML.

• metaModel: required: The instance of XSDMetaModel, which holds the XSD that the supplied models are
based on. Also see Section 3.1, “ XSDMetaModel ”

http://help.eclipse.org/ganymede/topic/org.eclipse.emf.doc/references/javadoc/org/eclipse/emf/ecore/xmi/XMLResource.html

XSD Adapter

99

• uri: required if no uriExpression is specified: The file name of the XML file which should be written. Absolute
URIs are valid. Use relative path names on your own risk.

• uriExpression: required if no uri is specified: In the scenario where multiple XML files are written, this provides
a mechanism to determine the file name for each of them. The Xtend-expression specified in expression is
evaluated for each file and has to return a file name. The model that is going to be written is accessible in the
expression via a variable that has the name specified in varName. Example:

<uriExpression varName="docroot" expression="'src-gen/'+ecore2xsd::getFileName(docroot)" />

• option: optional, can be specified multiple times: Option specifies a key-value-pair, which is handed on to
the EMF's XMLResource in the writing process. Valid options are documented via JavaDoc in interface
org.eclipse.emf.ecore.xmi.XMLResource .

3.4. XMLBeautifier
The XMLBeautifier uses EMF to load the XML file, formats the mixed content (elements and text contained
by the same element) and writes the file back to disk applying a nice indentation for the elements. The
XMLBeautifier is not intended to be used in combination with the XMLWriter, since the XMLWriter
cares about indentation by itself. Instead, use it for "manually" constructed XML files using Xpand. Since the
frameworks for loading/storing XML always load the whole file into a complex data structure in memory, this
approach does not scale well for huge XML files. Example:

<component class="org.eclipse.xpand2.Generator">
 <metaModel idRef="mm" />
 <expand value="${src-pkg}::${file}::Root FOR '${out}'" />
 <outlet path="${src-gen-dir}" />
 <beautifier class="org.eclipse.xtend.typesystem.xsd.XMLBeautifier">
 <maxLineWidth value="60" />
 <formatComments value="true" />
 <fileExtensions value=".xml, .html" />
 </beautifier>
</component>

Properties:

• maxLineWidth: optional: Specifies the number of character after which a linewrap should be performed.

• formatComments: optional, default true: Specifies if formatting should also be applied to comments.

• fileExtensions: optional, default ".xml, .xsl, .xsd, .wsdd, .wsdl": Specifies a filter for which files formatting
should be applied. Only files that match one of the specified file extensions are processed.

• loadOption: optional, can be specified multiple times: Option specifies a key-value-pair, which is handed on
to the EMF's XMLResource in the loading process. Valid options are documented via JavaDoc in interface
org.eclipse.emf.ecore.xmi.XMLResource .

• saveOption: optional, can be specified multiple times: Same as loadOption, except for the difference that these
options are applied while the writing process. Example:

<saveOption key="XML_VERSION" val="1.1" />
<saveOption key="ENCODING" val="ASCII" />

4. Behind the scenes: Transforming XSD to Ecore
In the code generation process an XML Schema is transformed to an EMF Ecore model, which is then
used as a meta model by EMF. XSD complex data types are mapped to EClasses, XSD simple data types
are mapped to EMF data types defined in org.eclipse.emf.ecore.xml.type.XMLTypePackage
and org.eclipse.xtend.typesystem.xsd.XSDMetaModel maps them to Xpand data types. The
document XML Schema to Ecore Mapping explains the mapping's details. http://www.eclipse.org/modeling/emf/
docs/overviews/XMLSchemaToEcoreMapping.pdf

5. How to declare XML Schemas
There are three different ways to declare your XSDs. It does not matter which way you choose, or how you combine
them, as long as the XSD Adapter can find all needed schemas.

http://help.eclipse.org/ganymede/topic/org.eclipse.emf.doc/references/javadoc/org/eclipse/emf/ecore/xmi/XMLResource.html
http://help.eclipse.org/ganymede/topic/org.eclipse.emf.doc/references/javadoc/org/eclipse/emf/ecore/xmi/XMLResource.html
http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf
http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf
http://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf

XSD Adapter

100

1. Within the Workflow: org.eclipse.xtend.typesystem.xsd.XSDMetaModel can have any
amount of schemaFile elements.

<component class="org.eclipse.xtend.typesystem.xsd.XMLReader">
 <modelSlot value="model" />
 <uri value="${file}" />
 <metaModel id="mm" class="org.eclipse.xtend.typesystem.xsd.XSDMetaModel">
 <schemaFile value="model/loadcurve.xsd" />
 <schemaFile value="model/device.xsd" />
 </metaModel>
</component>

2. Within the XML file: XML files can contain schemaLocation attributes which associate the schema's
namespace with the schema's filename. If the schema is created using WTP like described in Section 5, “Step
3: Create a Model using XML” , the schemaLocation attribute is created automatically.

<?xml version="1.0" encoding="UTF-8"?>
<device:Device
 xmlns:device="http://www.eclipse.org/modeling/xpand/example/model/device"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/modeling/xpand/example/model/device device.xsd">
 <device:Name>MyLaptop</device:Name>
</device:Device>

3. Within an XSD: If one schema imports another, the import element can have a schemaLocation attribute,
too.

<?xml version="1.0" encoding="UTF-8"?>
<schema
 targetNamespace="http://www.eclipse.org/modeling/xpand/example/model/device"
 elementFormDefault="qualified" xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.eclipse.org/modeling/xpand/example/model/device"
 xmlns:lc="http://www.eclipse.org/modeling/xpand/example/model/loadcurve"
 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore">

 <import
 namespace="http://www.eclipse.org/modeling/xpand/example/model/loadcurve"
 schemaLocation="loadcurve.xsd">
 </import>

 <complexType name="Device">
 <sequence>
 <element name="Name" type="string" />
 <element name="LoadCurve" type="lc:LoadCurve" />
 </sequence>
 </complexType>

 <element name="Device" type="tns:Device"></element>
</schema>

Part II. Tutorials

102

Chapter 10. UML2 Example
1. Setting up Eclipse

Before you can use Xpand with Eclipse UML2, you first have to install the UML2 plugins into your Eclipse
installation. (You need at least the 'UML2 End-User' Features. Downloadable from the Eclipse-Update site. Work
with: Helios update site, and then browse to Modeling and select at least the UML2 Extender SDK)

2. Setting up the project
Create a new Xpand plugin project named xpand.uml2.generator. To tell the Xpand Eclipse plugins that this
project is a UML2 specific one, you need to configure the Meta Model contributors. You need to add the UML2
profiles and the EMF Metamodels metamodel contributor. The order of profiles is important! The UML2 profiles
entry must be first in the list.

Figure 1. Configure UML2 profiles metamodel

You have to add the following dependencies to the manifest file:

• org.eclipse.xtend.typesystem.uml2

3. Creating a UML2 Model
You start by defining a UML2 model, i.e. an instance of the UML2 metamodel. Inside the project, in the source
folder, you create a UML2 model that you should call example.uml (after pressig Next>).

UML2 Example

103

Figure 2. Creating a new UML2 model

On the last page of the wizard you have to select the model object. Make sure its a Model, not a Profile.

Figure 3. Selecting the Model object

3.1. Modelling the content
You should then build a model that looks somewhat like this:

Figure 4. Example model

By the way, if you rename the .uml file to .ecore, you can edit the model using the ecore editors. To inspect
the model, they provide a somewhat better view, so you might try!

UML2 Example

104

4. Code generation

4.1. Defining the templates
Inside the source folder of our project, create a templates package. Inside that package folder, create a template
file Root.xpt that has the following content. First, we define the entry template that is called Root. Since we
expect a UML model element to be the top element to the model, we define it for uml::Model. Note the use of
the uml Namespace prefix, as defined in the UML2 metamodel. Inside that template, we iterate over all owned
elements of type uml::Package in the model and expand a template for the packages defined in it.

«DEFINE Root FOR uml::Model»
 «EXPAND PackageRoot FOREACH allOwnedElements().typeSelect(uml::Package)»
«ENDDEFINE»

In the package template, we again iterate over all owned elements and call a template that handles classes. Although
we only have classes in that package we could not rely on this in general. The package may contain any other
packageable element, so we need to filter classes using typeSelect().

«DEFINE PackageRoot FOR uml::Package»
 «EXPAND ClassRoot FOREACH ownedType.typeSelect(uml::Class)»
«ENDDEFINE»

This template handles classes. It opens a file that has the same name as the class, suffixed by .java. Into that
file, we generate an empty class body.

«DEFINE ClassRoot FOR uml::Class»
 «FILE name+".java"»
 public class «name» {}
 «ENDFILE»
«ENDDEFINE»

4.2. Defining the workflow
In order to generate code, we need a workflow definition. Here is the workflow file; you should put it into the
source folder. The file should be generally understandable if you read the Getting Started chapter.

<?xml version="1.0" encoding="ISO-8859-1"?>
<workflow>

You need to setup the UML2 stuff (registering URI maps, Factories, etc.). This can be done declaring a bean in
before of the XmiReader component:

<bean class="org.eclipse.emf.mwe.utils.StandaloneSetup" >
 <platformUri value=".."/>
</bean>

<!-- load model and store it in slot 'model' -->
<component class="org.eclipse.emf.mwe.utils.Reader">
 <uri value="platform:/resource/xpand.uml2.generator/src/example.uml" />
 <modelSlot value="model" />
</component>

The XmiReader reads the model and stores the content (a list containing the model element) in a slot named
'model'. As usual, you might want to clean the target directory.

<component id="dirCleaner"
 class="org.eclipse.emf.mwe.utils.DirectoryCleaner"
 directory="src-gen"/>

and in the generator we also configure the UML2 metamodel.

 <component id="generator" class="org.eclipse.xpand2.Generator" skipOnErrors="true">
 <metaModel class="org.eclipse.xtend.typesystem.uml2.UML2MetaModel"/>
 <expand value="templates::Root::Root FOR model"/>
 <fileEncoding value="ISO-8859-1"/>
 <outlet path="src-gen">
 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>

UML2 Example

105

 </outlet>
 </component>
</workflow>

If you run the workflow (by right clicking on the .mwe file and select Run As → MWE workflow) the two Java
classes should be generated.

5. Profile Support
Xpand is shipped with a special UML2 profiles metamodel implementation. The implementation maps Stereotypes
to Types and Tagged Values to simple properties. It also supports Enumerations defined in the profile and
Stereotype hierarchies.

5.1. Defining a Profile
To define a profile, you can use a variety of UML2-based modelling tools. Assuming they do actually correctly
create profile definitions (which is not always the case, as we had to learn painfully), creating a profile and
exporting it correctly is straight forward.

In this section, we explain the "manual way", which is good for explaining what happens, but completely useless
for practical use. You do not want to build models of realistic sizes using the mechanisms explained below.

You start be creating a new UML2 file (as shown above). In the example we will call it test.profile.uml.
The root element, however, will be a Profile, not a Package. Don't forget to actually assign a name to the profile!
It should be test, too.

The created Profile we call test. In our case, we want to make the stereotype be applicable to UML classes –
they are defined as part of the UML2 metamodel. So we have to import that metamodel first. So what you do is
to select your profile object, and then go to the UML2 Editor menu (in the Eclipse menu bar) and select Profile
-> Reference Metaclass. Select uml::Class. Then, add a stereotype to your profile (right mouse click on the
profile -> New Child -> Owned Stereotype -> Stereotype). Now you can define your stereotype: select Stereotype -
> Create Extension from the UML2 Editor menu. Select uml::Class. This should lead to the following model.
Save it and you are done with the profile definition.

Figure 5. Modelling a Profile

5.2. Applying the Profile
To make any use of the profile, we have to apply it to some kind of model. To do that, we copy the example.uml
model to a example-profiled.uml. We then open that file and load a resource, namely the profile we just
defined. This then looks somewhat like this:

UML2 Example

106

Figure 6. Loading the Profile

Now, to make the following stuff work, you first have to select the profile and select the Profile -> Define operation
from the UML2 Editor menu. This creates all kinds of additional model elements, about which you should not
care for the moment.

Now, finally, you can select your cars package (the one from the example model) and select Package -> Apply
Profile from the UML2 Editor menu. Select your test profile to be applied.

For the purpose of this example, you should now apply the test stereotype to the PersonCar class. Select the
class, and the select Element -> Apply Stereotype from the UML2 Editor menu. This should result in the following
model:

Figure 7. Defining the Profile

5.3. Generating Code
Note that all the stuff above was not in any way related to Xpand, it was just the "bare bones" means of creating
and applying a profile to a UML2 model. Having an UML2 tool capable of storing models as EMF UML2 XMI
would make the creation of the model far more easier. Since we cannot assume which UML2 tool you are using
this tutorial shows you this way, which would always work without further tooling installed.

UML2 Example

107

There are two things we have to change: The workflow (specifically, the configuration of the generator component)
needs to know about the profile, and the template needs to generate different code if a class has the test stereotype
applied. Let us look at the second aspect first. Here is the modified template (in RootWithProfile.xpt):

«DEFINE Root FOR uml::Model»
 «EXPAND PackageRoot FOREACH allOwnedElements().typeSelect(uml::Package)»
«ENDDEFINE»

«DEFINE PackageRoot FOR uml::Package»
 «EXPAND ClassRoot FOREACH ownedType.typeSelect(uml::Class)»
«ENDDEFINE»

«DEFINE ClassRoot FOR uml::Class»
 «FILE name+".java"»
 public class «name» {}
 «ENDFILE»
«ENDDEFINE»

«DEFINE ClassRoot FOR test::test»
 «FILE name+".java"»
 public class «name» {} // stereotyped
 «ENDFILE»
«ENDDEFINE»

As you can see, the stereotype acts just like a type, and even the polymorphic dispatch between the base type
(uml::Class) and the stereotype works!

Adapting the workflow file is also straight forward (workflowWithProfile.mwe). Here is the modified
model component with the new model example-profiled.uml and a extended setup:

<?xml version="1.0"?>
<workflow>
 <!-- set up EMF for standalone execution -->
 <bean class="org.eclipse.emf.mwe.utils.StandaloneSetup" platformUri=".." />

 <!-- prepare for performing uml -->
 <bean class="org.eclipse.xtend.typesystem.uml2.Setup" standardUML2Setup="true" />

 <!--UML2 Profile - Metamodell-->
 <bean id="mm_profile" class="org.eclipse.xtend.typesystem.uml2.profile.ProfileMetaModel">
 <profile value="platform:/resource/xpand.uml2.generator/src/test.profile.uml"/>
 </bean>

<!-- load model and store it in slot 'model' -->
<component class="org.eclipse.emf.mwe.utils.Reader">
 <uri value="platform:/resource/xpand.uml2.generator/src/example-profiled.uml" />
 <modelSlot value="model" />
</component>

And here is the modified generator component:

<component id="generator" class="org.eclipse.xpand2.Generator" skipOnErrors="true">
 <metaModel idRef="mm_profile"/>
 <expand value="templates::Root::Root FOR model"/>
 <fileEncoding value="ISO-8859-1"/>
 <outlet path="src-gen">
 <postprocessor class="org.eclipse.xpand2.output.JavaBeautifier"/>
 </outlet>
</component>
</workflow>

The only thing, we have to do is to add a new metamodel that references the profile we just created.

108

Chapter 11. XSD Tutorial
This tutorial shows how XML and XML Schemas Definitions (XSD) can be used to generate software. It illustrates
how XML files are treated as models, XSDs as meta models and how this integrates with Xpand. This tutorial is
an introduction, for in-depth details see Chapter 9, XSD Adapter.

1. Setup
XSD support for Xpand comes with Xpand 0.7.2 or later. Make sure the following plugins are installed as well:

• XSD - XML Schema Definition Runtime (http://www.eclipse.org/xsd/, available via Ganymede Update Site)

• Web Tools Platform (WTP) (WTP is not required to use Xpand XSD support, but helpful, as its provides a
nice XML Schema editor and a schema-aware XML editor. (http://www.eclipse.org/webtools/ , available via
Ganymede Update Site)

2. Overview
This tutorial explains how you can do code generation with Xtend and Xpand, using XML Schema Definitions as
meta models and XML files as models. To keep things easy, the introduced example is a minimalistic one. A text
file is generated from contents specified in XML. The general concept of models, meta models and why and when
code generation is useful, is not explained. At the end, a deeper view under the hood is taken to understand how
XML Schemas are transformed to EMF Ecore models, and which flexibilities/restrictions this approach provides.

All source files listed within this tutorial are also available as an example project wich can
be imported into the Eclipse workspace by running "File" / "New" / "Example..." / "Xpand/
Xtend Examples using an XSD Meta Model" / "M2T custom XML to Text via Xpand (minimal
Example)". This will create the project org.eclipse.xpand.examples.xsd.m2t.minimal
project in your workspace. This minimal example is based on "M2T custom XML to
Java via Xpand" (org.eclipse.xpand.examples.xsd.m2t.xml2javawizard) which is more
comprehensive and recommended for further reading.

To generate code from XML files with Xpand, at least files of the following four types are needed:

• Meta Model (metamodel.xsd)

• Model (model.xml)

• Xpand Template (template.xpt)

• MWE Workflow (workflow.mwe)

Figure 1. Minimalistic Xpand XSD Project

3. Step 1: Create a Project
To create a Project, create an ordinary Xtend/Xpand-Project. This is done in Eclipse by changing to the Xtend/
Xpand perspective and clicking on "File" / "New" / "Xtend/Xpand Project". After entering a name for the project
it is created.

http://www.eclipse.org/xsd/
http://www.eclipse.org/webtools/

XSD Tutorial

109

After the project is created, support for XSD meta models needs to be activated. Click with your right mouse
button on the project and open the properties window. Then go to the "Xpand/Xtend" page, "enable project specific
settings" and activate the "XSD Metamodels" checkbox. There is no need to leave support for any other meta
models activated, except you are sure that you want to use one of them, too. Figure 2, “Activate XSD Meta Model
Support for Project” shows how the configuration is supposed to look like.

Figure 2. Activate XSD Meta Model Support for Project

Then, org.eclipse.xtend.typesystem.xsd needs to be added to the project's dependencies. To do
so open the file META-INF/MANIFEST.MF from your project and navigate to the "Dependencies"-tab.
org.eclipse.xtend.typesystem.xsd needs to be added to the list of "Required Plug-ins", as it is shown
in Figure 3, “Required Dependencies for Project” .

XSD Tutorial

110

Figure 3. Required Dependencies for Project

4. Step 2: Define a Meta Model using XML Schema
In case you are not going to use an existing XML Schema Definition, you can create a new a new one like described
below. These steps make use of the Eclipse Web Tools Platform (WTP) to have fancy editors.

In Eclipse, click on "File", "New", "Other..." and choose "XML Schema" from category "XML". Select the project's
"src" folder and specify a filename. Clicking on "finish" creates an empty XSD file. It is important that the XSD
file is located somewhere within the project's classpath.

This XML Schema consists of two complex data types, which contain some elements and attributes. "complex"
in the XSD terminology means that as opposed to simple data types that they can actually have sub-elements and/
or attributes. This example is too minimalistic to do anything useful.

The complex Type Wizard contains the elements startpage , name , welcometext , and choicepage .
Except for choicepage all elements have to contain strings, whereas the string of startpage must be a valid
id of any ChoicePage . The complex type ChoicePage just contains an id and a name . For Xpand it does
not make any difference if something is modeled as an XML-attribute or XML-element. Just the datafield's type
defines how Xpand treats the value.

To get an overview how schemas can be used by the Xpand XSD Adapter, see Section 5, “How to declare XML
Schemas”

Internally, the Xpand XSD Adapter transforms the XSD model to an Ecore model which Xpand can use like any
other Ecore model. For more information about that, see Section 4, “Behind the scenes: Transforming XSD to
Ecore”

XSD Tutorial

111

Figure 4. WTP Schema Editor

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.org/wizard"
 xmlns:tns="http://www.example.org/wizard"
 elementFormDefault="qualified">

 <complexType name="Wizard">
 <sequence>
 <element name="startpage" type="IDREF" />
 <element name="name" type="string" />
 <element name="welcometext" type="string" />
 <element name="choicepage" type="tns:ChoicePage" />
 </sequence>
 </complexType>

 <complexType name="ChoicePage">
 <sequence>
 <element name="title" type="string" />
 </sequence>
 <attribute name="id" type="ID" />
 </complexType>

 <element name="wizard" type="tns:Wizard" />
</schema>

5. Step 3: Create a Model using XML
As the title says, data in XML-Format will be the model. And as a model has to be valid according to a meta
model, the XML files must be valid according to the XSD.

In case you are not going to use an existing XML file, you can create a new one like described below. These steps
require the Eclipse Web Tools Platform (WTP) to be installed.

In Eclipse, click on "File", "New", "Other..." and choose "XML" from category "XML". After specifying a filename
within folder "src" choose "create XML file from an XML Schema" and select you XML Schema Definition file.
Telling Eclipse which schema to use has three advantages: Eclipse validates XML files, there is meta model aware
code completion while editing and Eclipse creates a xsi:schemaLocation-attribute which tells anyone who reads
the XML file where the schema file is located. This tutorial does not use the xsi:schemaLocation-attribute and
introduces the schema file in the MWE workflow instead. For all possible ways see Section 5, “How to declare
XML Schemas” . It is important that the XML file is located somewhere within the project's classpath.

<?xml version="1.0" encoding="UTF-8"?>
<wizard xmlns="http://www.example.org/wizard">
 <startpage>start</startpage>
 <name>My Example Setup</name>
 <welcometext>Welcome to this little demo application.</welcometext>
 <choicepage id="start">
 <title>Wizard Page One</title>

XSD Tutorial

112

 </choicepage>
</wizard>

6. Step 4: Create a Template using Xpand
Create an ordinary Xpand Template file: Being in the Xpand/Xtend perspective, go to "File", "New", "xPand
template". The Xpand language itself is explained by several other Xpand documents. Having XSD meta model
support activated like described in Section 3, “Step 1: Create a Project” , Xpand scans and watches all it's projects
for suitable meta models. Based on what is found, the Xpand editor provides meta model aware code completion.

This example imports "metamodel" at the beginning, which refers to a file called metamodel.xsd that
you have created within the project's classpath in Section 4, “Step 2: Define a Meta Model using XML
Schema” . The define-block can be understood as a function named "Root" which takes one object of type
metamodel::Wizard as a parameter. This is the meta model's type for the XML's root object. The file-block
creates a file named wizard.txt and writes the text that is surrounded by the file-block into the file. name
, welcometext and choicepage.title are elements or attributes defined in the XSD meta model. Their
values are stored within the XML file and this templates inserts them into the generated (wizard.txt) file.

«IMPORT metamodel»

«DEFINE Root FOR metamodel::Wizard»
«FILE "wizard.txt"»
Name: «name»
Welcometext: «welcometext»
First Page Title: «choicepage.title»
«ENDFILE»
«ENDDEFINE»

7. Step 5: Create a Workflow
The workflow ties together model, meta model and templates and defines the process of how to generate code.

To create a new workflow file, switch to the Xpand/Xtend perspective, click on "File", "New" and "Workflow
file". After specifying a folder and a filename an empty workflow is created.

The minimalistic approach consists of two steps:

1. Read the Model: This is done by org.eclipse.xtend.typesystem.xsd.XMLReader .
It needs exactly one uri element which defines the XML file. A further nested element of type
org.eclipse.xtend.typesystem.xsd.XSDMetaModel tells the XMLReader which metamodel
to use. XSDMetaModel can contain multiple schemaFile elements. How the schemas are used for the
XML file is determined based on the declared namespaces. modelSlot defines a location where the model is
stored internally, this is like a variable name which becomes important if you want to handle multiple models
within the same workflow.

2. Generate Code: This part just does the regular code generation using Xpand and is not specific to the Xpand
XSD Adapter at all. The generator org.eclipse.xpand2.Generator needs to know which meta
model to use. This example references the previously declared one. The expand element tells the generator to
call the definition named Root within file template.xpt using the contents of slot model as parameter.
Element outlet defines where to store the generates files.

<workflow>
 <component class="org.eclipse.xtend.typesystem.xsd.XMLReader">
 <modelSlot value="model" />
 <uri value="model.xml" />
 <metaModel id="mm"
 class="org.eclipse.xtend.typesystem.xsd.XSDMetaModel">
 <schemaFile value="metamodel.xsd" />
 </metaModel>
 </component>
 <component class="org.eclipse.xpand2.Generator">
 <metaModel idRef="mm" />
 <expand value="template::Root FOR model" />
 <outlet path="src-gen" />
 </component>
</workflow>

XSD Tutorial

113

8. Step 6: Execute Workflow aka Generate Code
Before you actually execute the workflow, or in case of errors, you can use Figure 5, “Files of this Tutorial” to
double check your files.

Figure 5. Files of this Tutorial

To execute the workflow, click with your right mouse button on the workflow file and choose "Run As", "MWE
Workflow", as it is shown in Section 8, “Step 6: Execute Workflow aka Generate Code” .

XSD Tutorial

114

Figure 6. Execute Workflow

When executing the workflow, this output is supposed to appear in Eclipse's Console View. If that View does not
pop up automatically, you can reach it via "Window", "Show View", "Console".

May 25, 2009 3:09:35 PM org.eclipse.emf.mwe.core.WorkflowRunner prepare
INFO: running workflow: /Users/meysholdt/Eclipse/workspace-3.5-M7/org.eclipse.xpand.examples.xsd.m2t.minimal/src/xsd/m2t/minimal/minimal.mwe
May 25, 2009 3:09:35 PM org.eclipse.emf.mwe.core.WorkflowRunner prepare
INFO:
May 25, 2009 3:09:36 PM org.eclipse.xtend.typesystem.xsd.XSDMetaModel addSchemaFile
INFO: Loading XSDSchema from 'xsd/m2t/minimal/metamodel.xsd'
May 25, 2009 3:09:37 PM org.eclipse.xtend.typesystem.xsd.builder.OawXSDEcoreBuilder initEPackage
INFO: Creating EPackage 'metamodel' from XSDSchema 'file:/.../bin/xsd/m2t/minimal/metamodel.xsd' (http://www.example.org/wizard)
May 25, 2009 3:09:37 PM org.eclipse.emf.mwe.core.container.CompositeComponent internalInvoke
INFO: XMLReader: Loading XML file xsd/m2t/minimal/model.xml
May 25, 2009 3:09:37 PM org.eclipse.emf.mwe.core.container.CompositeComponent internalInvoke
INFO: Generator: generating 'xsd::m2t::minimal::template::Root FOR model' => src-gen
May 25, 2009 3:09:38 PM org.eclipse.xpand2.Generator invokeInternal2
INFO: Written 1 files to outlet [default](src-gen)
May 25, 2009 3:09:38 PM org.eclipse.emf.mwe.core.WorkflowRunner executeWorkflow
INFO: workflow completed in 657ms!

XSD Tutorial

115

After code generation, there is a file called wizard.txt within the src-gen folder. Its contents is supposed
to look like shown below. You should be able to recognize the structure you've defined within the template file
and the contents from your XML model.

Name: My Example Setup
Welcometext: Welcome to this little demo application.
First Page Title: Wizard Page One

116

Index
Symbols
.chk, 36
.xpt, 46
*.ext, 37

A
Advice, 43
AdviceContext, 44
AOP, 43, 52

Join point, 52
Point cut, 52
Workflow, 59
Xpand, 58

AROUND, 52, 58, 59
Aspect-Oriented Programming, 43

B
Boolean type, 23
Built-in type, 23

Collection types, 23
Object, 23, 30
Simple type, 23
Void, 23, 30

C
cached, 39
cartridge, 52
Casting, 36
CEND, 50
Check

File extension, 36
Language, 17, 36

Classpath, 46
collect, 32, 33
Collection, 23, 50
Collection type, 22
collection type, 49
Constraint, 17, 36
create, 41
Create extension, 45
CSTART, 50

D
DEFINE, 47
DirectoryCleaner, 104
Dynamic EMF, 12

E
EClassifiers, 22
ELSEIF, 50
EMF, 1
EmfMetaModel, 16, 22, 28

metaModelPackage, 12

EMF metamodel, 26
EMF project, 2
EmfRegistryMetaModel, 27
EMF UML2 XMI, 106
Encoding, 8 (see File encoding)
ENDIF, 50
Enumeration

Literal, 31
Enumeration (UML2), 105
EPackages, 22
ERROR, 51
ExecutionContext, 40
exists, 33
EXPAND, 48, 54
Expression, 30

cached, 41
call, 42
chain, 34
create, 45
if, 34
new, 35
separator, 50
switch, 34

Expression language, 30
Extension, 18, 38

caching, 39
create, 41, 45
invocation, 38
Java, 40
private, 40
recursion, 39

EXTENSION, 46

F
FILE, 47
File encoding

encoding, 46, 54, 56
File extension

.xpt, 46
FOR, 49
forAll, 33
FOREACH, 49

G
Generator

fileEncoding property, 54
Metamodel configuration, 54
Workflow component, 53

Genmodel, 6
GLOBALVAR, 35
Global variables, 35
Guard conditions, 37
Guillemet, 15, 46, 54

I
IExecutionContextAware, 40
IF, 50
import, 38

Index

117

IMPORT, 46
Integer type, 23
ITERATOR, 50

J
JavaBeansMetaModel, 42
JavaBeansStrategy, 42
JavaBeautifier, 56
Java extension, 18, 40
JavaMetaModel, 24, 29, 42
Join point, 43, 44, 52, 52, 52
join point, 58

K
Keyword

Property, 36

L
LET, 51, 51
List, 23
Literals, 30

M
meta-metamodel, 5
MetaModel, 22
Metamodel, 24, 26, 27

(non-invasive) extension, 37
EMF, 28
EMF Registry, 27
Implementing metamodels, 30
Java, 29
UML2, 28, 28
XSD, 29

MetamodelContributor, 24
Metamodel contributor, 102
Metamodel implementation, 24
Model-to-model transformation, 44
Model transformation, 41
Multiple dispatching, 35

N
Namespace

Import, 48
Newline, 52
NoChangesVetoStrategy, 57

O
OCL, 30
ONFILECLOSE, 48
Operation, 24
Outlet, 48, 55

P
Point cut, 43, 52
Polymorphism, 39, 47
PostProcessor, 56, 56

private, 40
proceed, 44
ProfileMetaModel, 29
property, 24
PROTECT, 50
Protected region, 50, 56

Disable, 51
Enable, 51

prSrcPaths, 56

R
Real type, 23
Recursive extensions, 39
Reexport, 38
reject, 32
REM, 51
Return type, 39

S
select, 32
SEPARATOR, 49
Set type, 23
SlotCopier, 80
SlotListAdder, 80
SlotPrinter, 81
sortBy, 33
Stereotype, 105
String type, 23
SystemCommand, 79

T
Tagged value, 105
Template

File, 46, 47
Polymorphism, 47

Transformation, 45
Type

Data type, 22
Operation, 23
Parameter, 44
Parameterized type, 22
Property, 23
Static property, 23, 31

Type inference, 39
typeSelect, 32, 55

U
UML2, 102
UML2MetaModel, 28, 104

V
VetoStrategy, 57

W
Weaving advices, 43
Whitespace

Omit, 52

Index

118

WorkflowComponent, 43

X
XMI, 5
XMIReader, 29
XmiReader, 104
XMI reader, 29
Xpand

Comments, 51
Expression statements, 52
Language, 46

XpandException, 51
XSDMetaModel, 29
Xtend, 46

Comments, 38
File extension, 37
Language, 37

XtendComponent, 43
Advices, 44

XtendFacade, 42

	Xpand Documentation
	Table of Contents
	Chapter 1. Getting Started
	1. Xpand Setup
	2. Tutorial overview
	3. Defining an EMF metamodel
	3.1. Creating an EMF project
	3.2. Defining the (meta)model

	4. Generating the EMF tooling
	5. Setting up the generator project
	6. Defining an Example Data Model
	7. Using Dynamic EMF
	8. Generating code from the example model
	8.1. The workflow definition
	8.2. Running the workflow
	8.3. Templates
	8.4. Running the generator again

	9. Checking Constraints with the Check Language
	9.1. Defining the constraint
	9.2. Integration into the workflow file

	10. Extensions
	10.1. Expression Extensions
	10.2. Java Extensions

	Part I. Reference
	Chapter 2. Xpand / Xtend / Check Reference
	1. Introduction
	2. Type System
	2.1. Types
	2.1.1. Type Names
	2.1.2. Collection Type Names
	2.1.3. Features

	2.2. Built-In Types
	2.2.1. Object
	2.2.2. Void
	2.2.3. Simple types (Data types)
	2.2.4. Collection types
	2.2.5. Type system types

	2.3. Metamodel Implementations (also known as Meta-Metamodels)
	2.3.1. Example JavaMetaModel
	2.3.2. Eclipse IDE MetaModelContributors
	2.3.3. Configuring Metamodel implementations with the workflow

	2.4. Using different Metamodel implementations (also known as Meta-Metamodels)
	2.5. Metamodel Reference
	2.5.1. EMF Metamodels
	2.5.1.1. The EMF Registry Metamodel (org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel)
	2.5.1.2. The EMF Metamodel (org.eclipse.xtend.typesystem.emf.EmfMetaModel)

	2.5.2. UML Metamodels
	2.5.2.1. The UML2 Metamodel (org.eclipse.xtend.typesystem.uml2.UML2MetaModel)
	2.5.2.2. The UML2 Profile Metamodel (org.eclipse.xtend.typesystem.uml2.profile.ProfileMetaModel)
	2.5.2.3. The XMI reader (org.eclipse.xtend.typesystem.uml2.profile.ProfilingExtensions.XmiReader)

	2.5.3. The Java Metamodel (org.eclipse.internal.xtend.type.impl.java.JavaMetaModel)
	2.5.4. The XSD Metamodel (org.eclipse.xtend.typesystem.xsd.XSDMetaModel)
	2.5.5. Implementing Your Own Metamodel

	3. Expressions
	3.1. Literals and special operators for built-in types
	3.1.1. Object
	3.1.2. Void
	3.1.3. Type literals
	3.1.4. StaticProperty literals
	3.1.5. String
	3.1.6. Boolean
	3.1.7. Integer and Real
	3.1.8. Collections

	3.2. Special Collection operations
	3.2.1. select
	3.2.2. typeSelect
	3.2.3. reject
	3.2.4. collect
	3.2.5. Shorthand for collect (and more than that)
	3.2.6. forAll
	3.2.7. exists
	3.2.8. sortBy

	3.3. if expression
	3.4. switch expression
	3.5. Chain expression
	3.6. new expression
	3.7. 'GLOBALVAR' expression
	3.7.1. Using GLOBALVARS to configure workflows

	3.8. Multi methods (multiple dispatch)
	3.9. Casting
	3.10. Xpand keywords and metamodel properties

	4. Check
	4.1. Description of the Check language
	4.1.1. Guard Conditions

	4.2. The workflow component CheckComponent

	5. Xtend
	5.1. Xtend files
	5.2. Comments
	5.3. Import Statements
	5.4. Extension Import Statement
	5.4.1. Reexporting Extensions

	5.5. Extensions
	5.5.1. Extension Invocation
	5.5.2. Type Inference
	5.5.3. Recursion
	5.5.4. Cached Extensions
	5.5.5. Private Extensions

	5.6. Java Extensions
	5.6.1. static vs non-static invocation
	5.6.2. IExecutionContextAware

	5.7. Create Extensions (Model Transformation)
	5.8. Calling Extensions From Java
	5.9. WorkflowComponent
	5.10. Aspect-Oriented Programming in Xtend
	5.10.1. Join Point and Point Cut Syntax
	5.10.1.1. Extensions Name
	5.10.1.2. Parameter Types
	5.10.1.3. Proceeding

	5.10.2. Workflow configuration
	5.10.3. Model-to-Model transformation with Xtend
	5.10.4. Workflow
	5.10.5. The transformation

	6. Xpand2
	6.1. Template files and encoding
	6.2. General structure of template files
	6.3. Statements of the Xpand language
	6.3.1. IMPORT
	6.3.2. EXTENSION
	6.3.3. DEFINE
	6.3.4. FILE
	6.3.5. EXPAND
	6.3.5.1. Names
	6.3.5.2. Lazy evaluation

	6.3.6. FOR vs. FOREACH
	6.3.6.1. Specifying a Separator

	6.3.7. FOREACH
	6.3.8. IF
	6.3.9. PROTECT
	6.3.10. LET
	6.3.11. ERROR
	6.3.12. Comments
	6.3.13. Expression Statement
	6.3.14. Controlling generation of whitespace

	6.4. Aspect-Oriented Programming in Xpand
	6.4.1. Join Point and Point Cut Syntax
	6.4.1.1. Definition Name
	6.4.1.2. Parameter Types
	6.4.1.3. Target Type

	6.4.2. Proceeding

	6.5. Generator Workflow Component
	6.5.1. Main configuration
	6.5.2. Encoding
	6.5.3. Metamodel
	6.5.4. Output configuration
	6.5.5. PostProcessor
	6.5.5.1. JavaBeautifier
	6.5.5.2. XmlBeautifier
	6.5.5.3. CppBeautifier

	6.5.6. Protected Region Configuration
	6.5.7. VetoStrategy

	6.6. Example for using Aspect-Oriented Programming in Xpand
	6.7. The Problem
	6.8. Example
	6.8.1. Templates
	6.8.2. Workflow File
	6.8.3. Running the new generator

	6.9. More Aspect Orientation

	7. Profiler

	Chapter 3. Built-in types API documentation
	1. Object
	2. String
	3. Integer
	4. Boolean
	5. Real
	6. Collection
	7. List
	8. Set
	9. xpand2::Type
	10. xpand2::Feature
	11. xpand2::Property
	12. xpand2::Operation
	13. xpand2::StaticProperty
	14. Void
	15. xtend::AdviceContext
	16. xpand2::Definition
	17. xpand2::Iterator

	Chapter 4. Stdlib
	1. Introduction
	2. Stdlib extensions
	2.1. IO extensions
	2.1.1. debug (Object o)
	2.1.2. info (Object o)
	2.1.3. error (Object o)
	2.1.4. syserr (Object o)
	2.1.5. syserr (Object o, String prefix)
	2.1.6. syserr (Object o)
	2.1.7. throwError (Object o)
	2.1.8. String includeFile (String filePath, String encoding)
	2.1.9. String includeFile (String filePath)
	2.1.10. Examples
	2.1.11. Controlling the log level

	2.2. Counter extensions
	2.2.1. int counterInc (Object o)
	2.2.2. int counterDec (Object o)
	2.2.3. int counterReset (Object o)
	2.2.4. int counterGet (Object o)
	2.2.5. Example

	2.3. Properties extensions
	2.3.1. String getProperty (String key)
	2.3.2. Workflow component
	2.3.3. Example

	2.4. Element properties extensions
	2.4.1. Void setProperty (Object element, String name, Object value)
	2.4.2. Object getProperty (Object element, String name)

	2.5. Issues extensions
	2.5.1. String reportWarning (String message)
	2.5.2. String reportWarning (Object object, String message)
	2.5.3. String reportError (String message)
	2.5.4. String reportError (Object object, String message)
	2.5.5. Workflow component
	2.5.6. Example

	2.6. Naming extensions
	2.6.1. String namespace (Object this)
	2.6.2. String qualifiedName (Object this)
	2.6.3. String loc (Object this)
	2.6.4. Object findByName (Collection candidates, String name)

	2.7. Globalvar extensions
	2.7.1. Example

	2.8. Cloning extensions
	2.8.1. Object clone (Object original)
	2.8.2. List clone (List l)

	2.9. Cross references extensions
	2.9.1. List[EObject] getReferencingObjects(EObject target)
	2.9.2. Example

	2.10. UID extensions
	2.10.1. cached String uid(Object o)
	2.10.2. String createUID(Object o)
	2.10.3. String xmlId (ecore::EObject o)

	2.11. Mixin extensions
	2.11.1. Object getMandatoryMixin(Object mixinModel, Object ctx, xpand2::Type t)
	2.11.2. Object getOptionalMixin(Object mixinModel, Object ctx, xpand2::Type t)

	2.12. Tracing extensions
	2.12.1. Void createTrace(Object from, Object to, String kind, String backKind)
	2.12.2. Void createTrace(Object from, Object to, String kind)
	2.12.3. Void clearTrace()
	2.12.4. Object getSingleTraceTarget(Object from, String kind)
	2.12.5. Boolean hasTrace(Object from, String kind)

	3. Stdlib workflow components
	3.1. SystemCommand
	3.2. SlotCopier
	3.3. SlotListAdder
	3.4. SlotPrinter

	Chapter 5. Xpand Eclipse Integration
	1. Introduction
	2. Installation
	3. Overview
	4. File decorations
	5. Editors
	5.1. Syntax coloring
	5.2. Code completion
	5.3. Xpand tag delimiter creation support

	6. Preference pages
	6.1. Metamodel contributors
	6.2. Global preferences
	6.3. Preferences per project

	7. Xpand Nature and Xpand Builder
	7.1. Problem markers

	8. Running a workflow

	Chapter 6. Incremental Generation
	1. Technical Background
	2. Using Incremental Generation
	2.1. The Incremental Generation Facade
	2.2. The Incremental Generation Callback

	3. Additional Notes
	3.1. Limitations
	3.2. Performance Considerations

	Chapter 7. Improve performance using the backend
	1. Technical background
	1.1. How it works in interpreted mode

	2. Using the backend
	2.1. A quickstart
	2.2. Compiling sources to Java
	2.3. Executing workflows using the backend
	2.3.1. Setting up the backend languages
	2.3.2. Calling Xpand templates - the generator
	2.3.3. Executing Check on the backend
	2.3.4. Executing Xtend extensions on the backend

	2.4. Implementing functions in Java - the Java Annotations Middleend

	3. Call functions registered at the backend from Java

	Chapter 8. UML2 Adapter
	1. Introduction
	2. Installation
	3. Setting up Eclipse
	3.1. Profiles in Eclipse

	4. Runtime Configuration
	4.1. Workflow

	Chapter 9. XSD Adapter
	1. Prerequisites
	2. Overview
	3. Workflow Components
	3.1. XSDMetaModel
	3.2. XMLReader
	3.3. XMLWriter
	3.4. XMLBeautifier

	4. Behind the scenes: Transforming XSD to Ecore
	5. How to declare XML Schemas

	Part II. Tutorials
	Chapter 10. UML2 Example
	1. Setting up Eclipse
	2. Setting up the project
	3. Creating a UML2 Model
	3.1. Modelling the content

	4. Code generation
	4.1. Defining the templates
	4.2. Defining the workflow

	5. Profile Support
	5.1. Defining a Profile
	5.2. Applying the Profile
	5.3. Generating Code

	Chapter 11. XSD Tutorial
	1. Setup
	2. Overview
	3. Step 1: Create a Project
	4. Step 2: Define a Meta Model using XML Schema
	5. Step 3: Create a Model using XML
	6. Step 4: Create a Template using Xpand
	7. Step 5: Create a Workflow
	8. Step 6: Execute Workflow aka Generate Code

	Index

