Skip to main content
aboutsummaryrefslogtreecommitdiffstats
blob: 059f854136d12e1efa26c27d7c3ce91d858a8a54 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
h1. eTrice Overview

h2. What is eTrice?

eTrice provides an implementation of the ROOM modeling language (Real Time Object Oriented Modeling) together with editors, code generators for Java, C++ and C code and exemplary target middleware.

The model is defined in textual form (Xtext) with graphical editors (Graphiti) for the structural and behavioral (i.e. state machine) parts.  

h2. Who should use eTrice?

Basically everyone who develops eventdriven realtime or embedded systems. 

If you have other ideas how to use it, tell us!

h2. How Does It Work?

TODO

h2. Who is Behind eTrice?

TODO

h1. Introduction to the ROOM Language


h1. Tutorial HelloWorld

h2. Scope

In this tutorial you will build your first very simple etrice model. The goal is to learn the work flow of eTrice and to understand a few basic features of ROOM. You will perform the following steps:

# create a new model from scratch
# add a very simple state machine to an actor
# generate the source code
# run the model
# open the message sequence chart

h2. Create a new model from scratch

The easiest way to create a new eTrice Project is to use the eclipse project wizard. From the eclipse file menu select ??File->New->Project?? and create a new eTrice project and name it ??HelloWorld??

!images/015-HelloWorld10.PNG!

The wizard creates everything that is needed to create, build and run a eTrice model. The resulting project should look like this:

!images/015-HelloWorld11.PNG!

Within the model directory the model file ??HelloWorld.room?? was created. Open the ??HelloWorld.room?? file and position the cursor at the very beginning of the file. Open the content assist with Ctrl+Space and select ??model skeleton??.

!images/015-HelloWorld12.PNG!   

Edit the template variables and remove the artefacts from the wizard. 

The resulting model code should look like this:

bc.. 
RoomModel HelloWorld {

	LogicalSystem System_HelloWorld {
		SubSystemRef subsystem : SubSystem_HelloWorld
	}

	SubSystemClass SubSystem_HelloWorld {
		ActorRef application : HelloWorldTop
	}

	ActorClass HelloWorldTop {
	}
} 
bq. 

The goal of eTrice is to describe distributed systems on a logical level. In the current version not all elements will be supported. But as prerequisite for further versions the following elements are mandatory for an eTrice model:
* the ??LogicalSystem?? 
* at least one ??SubSystemClass??
* at least one ??ActorClass??

The ??LogicalSystem?? represents the complete distributed system and contains at least one ??SubSystemRef??. The ??SubSystemClass?? represents an address space and contains at least one ??ActorRef??. The ??ActorClass?? is the building block of which an application will be build of. It is a good idea to define a top level actor that can be used as reference within the subsystem.

Mention that a outline view was created that represents all currently existing model elements in a graphical way.


!images/015-HelloWorld02.PNG!


h2. Create a state machine

We will implement the Hello World code on the initial transition of the ??HelloWorldTop?? actor. Therefore open the state machine editor by right clicking the ??HelloWorldTop?? actor in the outline view and select ??Edit Behavior??.

!images/015-HelloWorld03.PNG!

The state machine editor will be opened. Drag and drop an ??Initial Point?? from the tool box to the diagram into the top level state. Drag and drop a ??State?? from the tool box to the diagram. Confirm the dialogue with ??ok??. Select the ??Transition?? in the tool box and draw the transition from the ??Initial Point?? to the State. Open the transition dialogue by double clicking the caption of the transition and fill in the action code.

bc. System.out.println("Hello World !");
 
The result should look like this:

!images/015-HelloWorld04.PNG!

Save the diagram and inspect the model file. Note that the textual representation was created after saving the diagram.

!images/015-HelloWorld05.PNG!


h2. Build and run the model

Now the model is finished and source code can be generated. The project wizard has created a workflow that is responsible to generate the source code. From ??HelloWorld/src/workflow?? right click ??HelloWorld.mwe2?? and run it as MWE2Workflow. All model files in the model directory will be generated.

!images/015-HelloWorld06.PNG!

The code will be generated to the src-gen directory. The main class will be contained in ??SubSystem_HelloWorldRunner.java??. Select this file and run it as Java application.

!images/015-HelloWorld07.PNG!


The Hello World application starts and the string will be printed on the console window. To stop the application the user must type ??quit?? in the console window.

!images/015-HelloWorld08.PNG!

h2. Open the Message Sequence Chart

During runtime the application produces a MSC and wrote it to a file. Open /org.eclipse.etrice.doc.tutorials/tmp/log/SubSystem_HelloWorld_Async.seq. You should see something like this:

!images/015-HelloWorld09.PNG!


h2. Summary

Now you have generated your first eTrice model from scratch. You can switch between diagram editor and model (.room file) and you can see what will be generated during editing and saving the diagram files. 
You should take a look at the generated source files to understand how the state machine is generated and the life cycle of the application. The next tutorials deals with more complex state machines hierarchies in structure and behavior.
 

h1. Tutorial Blinky

h2. Scope

This tutorial describes how to use the ??TimingService??, combine a generated model with manual code and how to modeling a hierarchical state machine. The idea of the tutorial is, to switch a LED on and off. The behavior of the LED should be: blinking in a one second interval for 5 seconds, stop blinking for 5 seconds, blinking, stop,...  
For this exercise we will use a little GUI class that will be used in more sophisticated tutorials too. The GUI simulates a pedestrian traffic crossing. For now, just a simple LED simulation will be used from the GUI. 

To use the GUI please copy the package ??de.protos.PedLightGUI?? to your ??src?? directory. The package contains four java classes which implements a little window with a 3-light traffic light which simulates the signals for the car traffic and a 2-light traffic light which simulates the pedestrian signals.

The GUI looks like this:

!images/020-Blinky08.PNG!

Within this tutorial we just will switching on and off the yellow light.

You will perform the following steps:

# create a new model from scratch
# define a protocol
# create an actor structure
# create a hierarchical state machine
# use the predefined ??TimingService??
# combine manual code with generated code
# build and run the model
# open the message sequence chart

h2. Create a new model from scratch

Remember exercise ??HelloWorld??.
Create a new eTrice project and name it ??Blinky??
Open the ??Blinky.room?? file and copy the following code into the file or use content assist to create the model.

bc.. 
RoomModel Blinky {

	LogicalSystem System_Blinky {
		SubSystemRef subsystem : SubSystem_Blinky
	}

	SubSystemClass SubSystem_Blinky {
		ActorRef application : BlinkyTop
	}

	ActorClass BlinkyTop {
	}
}
bq. 

h2. Add two additional actor classes

Position the cursor outside any class definition and right click the mouse within the editor window. From the context menu select ??Content Assist??  

!images/020-Blinky02.png!

Select ??ActorClass - actor class skeleton?? and name it ??Blinky??.

!images/020-Blinky01.PNG! 

Repeat the described procedure and name the new actor ??BlinkyController??.

Save the model and visit the outline view.

h2. Create a new protocol

With the help of ??Content Assist?? create a ??ProtocolClass?? and name it ??BlinkyControlProtocol??.
Inside the brackets use the ??Content Assist?? (CTRL+Space) to create two incomming messages called ??start?? and ??stop??.

The resulting code should look like this:

!images/020-Blinky03.PNG! 

With Ctrl-Shift+F or selecting ??Format?? from the context menu you can format the text. Mention that all elements are displayed in the outline view.

h2. Import the Timing Service

Switching on and off the LED is timing controlled. Therefore a timing service is needed. To import the timing service in the outline view right click to ??SubSystem_Blinky??. Select ??Edit Structure??. Drag and Drop an ??ActorRef?? to the ??SubSystem_Blinky?? and name it ??application??. From the actor class drop down list select ??BlinkyTop??. Do the same clicks for the timing service. Name it ??timingService?? and from the drop down list select ??room.basic.service.timing.ATimingService??. Draw a ??LayerConnection?? from ??application?? to each service provision point (SPP) of the ??timingService??. The resulting structure should look like this:

!images/020-Blinky06.PNG! 

The current version of eTrice does not provide a graphical element for a service access point (SAP). Therefore the SAPs to access the timing service must be added in the .room file. Open the ??Blinky.room?? file and navigate to the ??Blinky?? actor. Add the following line to the structure of the actor:

bc. SAP timer: room.basic.service.timing.PTimeout

Do the same thing for ??BlinkyController??.

The resulting code should look like this:

!images/020-Blinky07.PNG!


h2. Finish the model structure

From the outline view right click to ??Blinky?? and select ??Edit Structure??. Drag and Drop an ??Interface Port?? to the boarder of the ??Blinky?? actor. Note that an interface port is not possible inside the the actor. Name the port ??ControlPort?? and select ??BlinkyControlProtocol?? from the drop down list. Uncheck ??Conjugated?? and ??Is Relay Port??. Klick ??ok??. The resulting structure should look like this:


!images/020-Blinky04.PNG!

Repeat the above steps for the ??BlinkyController??. Make the port ??Conjugated??

Keep in mind that the protocol defines ??start?? and ??stop?? as incoming messages. ??Blinky?? receives this messages and therefore ??Blinky??'s ??ControlPort?? must be a base port and ??BlinkyController??'s ??ControlPort?? must be a conjugated port.


From the outline view right click ??BlinkyTop?? and select ??Edit Structure??.

Drag and Drop an ??ActorRef?? inside the ??BlinkyTop?? actor. Name it ??blinky??. From the actor class drop down list select ??Blinky??. Do the same for ??controller??. Connect the ports via the binding tool. The resulting structure should look like this:

!images/020-Blinky05.PNG!

h2. Implement the Behavior

The application should switch on and off the LED for 5 seconds in a 1 second interval, than stop blinking for 5 seconds and start again. To implement this behavior we will implement two FSMs. One for the 1 second interval and one for the 5 second interval. The 1 second blinking should be implemented in ??Blinky??. The 5 second interval should be implemented in ??BlinkyController??. First implement the Controller.

Right click to ??BlinkyController?? and select ??Edit Behavior??.
Drag and Drop the ??Initial Point?? and two ??States?? into the top state. Name the states ??on?? and ??off??. 
Use the ??Transition?? tool to draw transitions from ??init?? to ??off?? from ??on?? to ??off?? and from ??off?? to ??on??.

Open the transition dialog by double click the arrow to specify the trigger event and the action code of each transition. Note that the initial transition does not have a trigger event.

The dialog should look like this:

!{width=500px}images/020-Blinky09.PNG! 

The defined ports will be generated as a member attribute of the actor class from type of the attached protocol. So, to send e message you must state ??port.message(p1,p2);??. In this example ??ControlPort.start()?? sends the ??start?? message via the ??ControlPort?? to the outside world. Assuming that ??Blinky?? is connected to this port, the message will start the one second blinking FSM. It is the same thing with the ??timer??. The SAP is also a port and follows the same rules. So it is clear that ??timer.Start(5000);?? will send the ??Start?? message to the timing service. The timing service will send a ??timeoutTick?? message back after 5000ms.

Within each transition the timer will be restarted and the appropriate message will be sent via the ??ControlPort??. 

The resulting state machine should look like this:

!images/020-Blinky10.PNG!

Save the diagram and inspect the ??Blinky.room?? file. The ??BlinkyController?? should look like this:

!images/020-Blinky11.PNG! 
 
Now we will implement ??Blinky??. Due to the fact that ??Blinky?? interacts with the GUI class a view things must to be done in the model file.

Double click ??Blinky?? in the outline view to navigate to ??Blinky?? within the model file.
Add the following code:

!images/020-Blinky12.PNG! 

??usercode1?? will be generated at the beginning of the file, outside the class definition. ??usercode2?? will be generated within the class definition. The code imports the GUI class and instantiates the window class. Attributes for the carLights and pedLights will be declared to easily access the lights in the state machine.
The Operation ??destroyUser()?? is a predefined operation that will be called during shutdown of the application. Within this operation, cleanup of manual coded classes can be done.
 
 
 
Now design the FSM of ??Blinky??. Open the behavior diagram of ??Blinky?? by right clicking the ??Blinky?? actor in the outline view. Create two states named ??blinking?? and ??off??. Right click to ??blinking?? and create a subgraph.

!images/020-Blinky13.PNG!

Create the following state machine. The trigger events between ??on?? and ??off?? are the ??timeoutTick?? from the ??timer?? port. 

!images/020-Blinky14.PNG!

Create entry code for both states by right clicking the state and select ??Edit State...??

Entry code of ??on?? is:

bc..  
timer.Start(1000);
carLights.setState(TrafficLight3.YELLOW); 
bq. 

 
Entry code  of ??off?? is:

bc.. 
timer.Start(1000);
carLights.setState(TrafficLight3.OFF);
bq. 

Navigate to the Top level state by double clicking the ??/blinking?? state. Create the following state machine:

!images/020-Blinky15.PNG!

The trigger event from ??off?? to ??blinking?? is the ??start?? event from the ??ControlPort??.The trigger event from ??blinking?? to ??off?? is the ??stop?? event from the ??ControlPort??.

Action code of the init transition is:

bc.. 
carLights = light.getCarLights();
pedLights = light.getPedLights();
carLights.setState(TrafficLight3.OFF);
pedLights.setState(TrafficLight2.OFF);
bq. 

Action code from ??blinking?? to ??off?? is:

bc.. 
timer.Kill();
carLights.setState(TrafficLight3.OFF); 
bq. 

The complete resulting model looks like this:

bc.. 
RoomModel Blinky {

	LogicalSystem System_Blinky {
		SubSystemRef subsystem: SubSystem_Blinky
	}

	SubSystemClass SubSystem_Blinky {
		ActorRef application: BlinkyTop
		ActorRef timingService: room.basic.service.timing.ATimingService
		LayerConnection ref application satisfied_by timingService.timer
		LayerConnection ref application satisfied_by timingService.timeout
	}

	ActorClass BlinkyTop {
		Structure {
			ActorRef blinky: Blinky
			ActorRef controller: BlinkyController
			Binding blinky.ControlPort and controller.ControlPort
		}
		Behavior { }
	}

	ActorClass Blinky {
		Interface {
			Port ControlPort: BlinkyControlProtocoll
		}
		Structure {
			usercode1{
				"import de.protos.PedLightGUI.*;"
			}
			usercode2 {
				"private PedestrianLightWndNoTcp light = new PedestrianLightWndNoTcp();"
				"private TrafficLight3 carLights;"
				"private TrafficLight2 pedLights;"
				
			}
			external Port ControlPort
			SAP timer: room.basic.service.timing.PTimeout
		}
		Behavior {
			Operation destroyUser(){
				"light.closeWindow();"
			}
			StateMachine {
				Transition init: initial -> off {
					action {
						"carLights = light.getCarLights();"
						"pedLights = light.getPedLights();"
						"carLights.setState(TrafficLight3.OFF);"
						"pedLights.setState(TrafficLight2.OFF);"
					}
				}
				Transition tr0: off -> tp0 of blinking {
					triggers {
						<start: ControlPort>
					}
				}
				Transition tr1: blinking -> off {
					triggers {
						<stop: ControlPort>
					}
					action {
						"timer.Kill();"
						"carLights.setState(TrafficLight3.OFF);"
					}
				}
				State off
				State blinking {
					subgraph {
						Transition tr0: my tp0 -> on
						Transition tr1: on -> off {
							triggers {
								<timeoutTick: timer>
							}
						}
						Transition tr2: off -> on {
							triggers {
								<timeoutTick: timer>
							}
						}
						Transition init: initial -> on { }
						EntryPoint tp0
						State on {
							entry {
								"timer.Start(1000);"
								"carLights.setState(TrafficLight3.YELLOW);"
							}
						}
						State off {
							entry {
								"timer.Start(1000);"
								"carLights.setState(TrafficLight3.OFF);"
							}
						}
					}
				}
			}
		}
	}

	ActorClass BlinkyController {
		Interface {
			conjugated Port ControlPort: BlinkyControlProtocoll
		}
		Structure {
			external Port ControlPort
			SAP timer: room.basic.service.timing.PTimeout
		}
		Behavior {
			StateMachine {
				Transition init: initial -> on {
					action {
						"timer.Start(5000);"
						"ControlPort.start();"
					}
				}
				Transition goOff: on -> off {
					triggers {
						<timeoutTick: timer>
					}
					action {
						"ControlPort.stop();"
						"timer.Start(5000);"
					}
				}
				Transition goOn: off -> on {
					triggers {
						<timeoutTick: timer|timeoutTick: timer>
					}
					action {
						"ControlPort.start();"
						"timer.Start(5000);"
					}
				}
				State on
				State off
			}
		}
	}

	ProtocolClass BlinkyControlProtocoll {
		incoming {
			Message start()
			Message stop()
		}
		outgoing { }
	}

}
bq. 

The model is complete now. You can run and debug the model as described in getting started. Have fun.

h2. Summary

Run the model and take look at the generated MSCs. Inspect the generated code to understand the runtime model of eTrice. Within this tutorial you have learned how to create a hierarchical FSM with group transitions and history transitions and you have used entry code. You are now familiar with the basic features of eTrice. The further tutorials will take this knowledge as a precondition.


h1. Tutorial Sending Data

h2. Scope

This tutorial shows how data will be sent in a eTrice model. Within the example you will create two actors (MrPing and MrPong). MrPong will simply loop back every data it received.
MrPing will sent data and verify the result.   

You will perform the following steps:

# create a new model from scratch
# create a data class
# define a protocol with attached data
# create an actor structure
# create two simple state machines
# build and run the model

h2. Create a new model from scratch

Remember exercise ??HelloWorld??.
Create a new eTrice project and name it ??SendingData??
Open the ??SendingData.room?? file and copy the following code into the file or use content assist to create the model.

bc.. 
RoomModel SendingData {
		LogicalSystem SendingData_LogSystem {
			SubSystemRef SendingDataAppl:SendingData_SubSystem 
		}
		SubSystemClass SendingData_SubSystem {
			ActorRef SendigDataTopRef:SendingDataTop 
		}
		ActorClass SendingDataTop {
		}
	}
bq. 

h2. Add a data class

Position the cursor outside any class definition and right click the mouse within the editor window. From the context menu select ??Content Assist?? (or Ctrl+Space).  

!images/025-SendingData01.png!

Select ??DataClass - data class skeleton?? and name it ??DemoData??.
Remove the operations and ass the following Attributes:

bc.. 
	DataClass DemoData {
		Attribute int32Val: int32 = "4711"
		Attribute int8Array [ 10 ]: int8 = "{1,2,3,4,5,6,7,8,9,10}"
		Attribute float64Val: float64 = "0.0"
		Attribute stringVal: string = "\"empty\""
	}
bq. 

Save the model and visit the outline view.
Note that the outline view contains all data elements as defined in the model. 

h2. Create a new protocol

With the help of ??Content Assist?? create a ??ProtocolClass?? and name it ??PingPongProtocol??. Create the following messages:

bc.. 
ProtocolClass PingPongProtocol {
					incoming {
						Message ping(data: DemoData)
						Message pingSimple(data:int32)
					}
					outgoing {
						Message pong(data: DemoData)
						Message pongSimple(data:int32)
					}
				}		
bq. 

h2. Create MrPing and MrPong Actors

With the help of ??Content Assist?? create two new actor classes and name them ??MrPing?? and ??MrPong??. The resulting model should look like this:

bc.. 
RoomModel SendingData {

	LogicalSystem SendingData_LogSystem {
		SubSystemRef SendingDataAppl: SendingData_SubSystem
	}

	SubSystemClass SendingData_SubSystem {
		ActorRef SendigDataTopRef: SendingDataTop
	}

	ActorClass SendingDataTop { }

	DataClass DemoData {
		Attribute int32Val: int32 = "4711"
		Attribute int8Array [ 10 ]: int8 = "{1,2,3,4,5,6,7,8,9,10}"
		Attribute float64Val: float64 = "0.0"
		Attribute stringVal: string = "\"empty\""
	}

	ProtocolClass PingPongProtocol {
		incoming {
			Message ping(data: DemoData)
			Message pingSimple(data: int32)
		}
		outgoing {
			Message pong(data: DemoData)
			Message pongSimple(data: int32)
		}
	}

	ActorClass MrPing {
		Interface { }
		Structure { }
		Behavior { }
	}

	ActorClass MrPong {
		Interface { }
		Structure { }
		Behavior { }
	}
} 

bq.  

The outline view should look like this:

!images/025-SendingData03.png!

h2. Define the Actors Structure and Behavior

Save the model and visit the outline view. Within the outline view, right click on the ??MrPong?? actor and select ??Edit Structure??. Select an ??Interface Port?? from the toolbox and add it to MrPong. Name the Port ??PingPongPort?? and select the ??PingPongProtocol??

!images/025-SendingData02.png!

Do the same with MrPing but mark the port as ??conjugated??

h3. Define MrPongs behavior

Within the outline view, right click MrPong and select ??Edit Behavior??. Create the following state machine:

!images/025-SendingData04.png!

The transition dialogues should look like this:
For ??ping??:

!images/025-SendingData05.png!

For ??pingSimple??:

!images/025-SendingData06.png!


h3. Define MrPing behavior

Within the outline view double click MrPing. Navigate the cursor to the behavior of MrPing. With the help of content assist create a new operation.

!images/025-SendingData07.png!

Name the operation ??printData?? and define the DemoData as a parameter.

Fill in the following code:

bc.. 
Operation printData(d: DemoData) : void {
			"System.out.printf(\"d.int32Val: %d\\n\",d.int32Val);"
			"System.out.printf(\"d.float64Val: %f\\n\",d.float64Val);"
			"System.out.printf(\"d.int8Array: \");"
			"for(int i = 0; i<d.int8Array.length; i++) {"
			"System.out.printf(\"%d \",d.int8Array[i]);}"
			"System.out.printf(\"\\nd.stringVal: %s\\n\",d.stringVal);"
		}
bq. 

For MrPing create the following state machine:

!images/025-SendingData08.png!

The transition dialogues should look like this:

For ??init??:

!images/025-SendingData09.png!

For ??wait1??:

!images/025-SendingData10.png!

For ??next??:

!images/025-SendingData11.png!

For ??wait2??:

!images/025-SendingData12.png!

h2. Define the top level

Open the Structure from SendingDataTop and add MrPing and MrPong as a reference. Connect the ports.

!images/025-SendingData13.png!

The model is finished now and the model file should look like this:

pre.. 
bc.. 
RoomModel SendingData {

	LogicalSystem SendingData_LogSystem {
		SubSystemRef SendingDataAppl: SendingData_SubSystem
	}

	SubSystemClass SendingData_SubSystem {
		ActorRef SendigDataTopRef: SendingDataTop
	}

	ActorClass SendingDataTop {
		Structure {
			ActorRef ref0: MrPing
			ActorRef ref1: MrPong
			Binding ref0.PingPongPort and ref1.PingPongPort
		}
		Behavior { }
	}

	ActorClass MrPing {
		Interface {
			conjugated Port PingPongPort: PingPongProtocol
		}
		Structure {
			external Port PingPongPort
		}
		Behavior {
						
			Operation printData(d: DemoData) : void {
						"System.out.printf(\"d.int32Val: %d\\n\",d.int32Val);"
						"System.out.printf(\"d.float64Val: %f\\n\",d.float64Val);"
						"System.out.printf(\"d.int8Array: \");"
						"for(int i = 0; i<d.int8Array.length; i++) {"
						"System.out.printf(\"%d \",d.int8Array[i]);}"
						"System.out.printf(\"\\nd.stringVal: %s\\n\",d.stringVal);"
					}
					
			StateMachine {
				Transition wait2: waitForPong -> waitForPong {
					triggers {
						<pong: PingPongPort>
					}
					action {
						"printData(data);"
					}
				}
				Transition wait1: waitForPongSimple -> waitForPongSimple {
					triggers {
						<pongSimple: PingPongPort guard {
							"data < 10"
						}>
					}
					action {
						"// keep in mind that MrPong increments"
						"PingPongPort.pingSimple(data);"
						"System.out.printf(\"data: %d\\n\",data);"
					}
				}
				Transition next: waitForPongSimple -> waitForPong {
					triggers {
						<pongSimple: PingPongPort>
					}
					action {
						"System.out.printf(\"data: %d\\n\",data);"
						""
						"DemoData d = new DemoData();"
						"// send the default values"
						"PingPongPort.ping(d);"
						"d.int32Val=815;"
						"for (int i = 0; i<d.int8Array.length;i++){"
						"\td.int8Array[i]=(byte)(i+100);"
						"\t}"
						"d.stringVal=\"some contents\";"
						"d.float64Val=3.141234;"
						"PingPongPort.ping(d);"
					}
				}
				Transition init0: initial -> waitForPongSimple {
					action {
						"PingPongPort.pingSimple(0);"
					}
				}
				State waitForPong
				State waitForPongSimple
			}
		}
	}

	ActorClass MrPong {
		Interface {
			Port PingPongPort: PingPongProtocol
		}
		Structure {
			external Port PingPongPort
		}
		Behavior {
			StateMachine {
				Transition init: initial -> looping { }
				Transition tr0: looping -> looping {
					triggers {
						<ping: PingPongPort>
					}
					action {
						"PingPongPort.pong(data);"
					}
				}
				Transition tr1: looping -> looping {
					triggers {
						<pingSimple: PingPongPort>
					}
					action {
						"PingPongPort.pongSimple(data+1);"
					}
				}
				State looping
			}
		}
	}

	ProtocolClass PingPongProtocol {
		incoming {
			Message ping(data: DemoData)
			Message pingSimple(data: int32)
		}
		outgoing {
			Message pong(data: DemoData)
			Message pongSimple(data: int32)
		}
	}

	DataClass DemoData {
		Attribute int32Val: int32 = "4711"
		Attribute int8Array [ 10 ]: int8 = "{1,2,3,4,5,6,7,8,9,10}"
		Attribute float64Val: float64 = "0.0"
		Attribute stringVal: string = "\"empty\""
	}
}
bq. 

h2. Generate and run the model

With the MWe2 workflow generate the code and run the model. 
The output should look like this:


type 'quit' to exit
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
data: 1
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
data: 2
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
data: 3
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
data: 4
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
data: 5
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
data: 6
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
data: 7
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
data: 8
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
data: 9
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
data: 10
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPong
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping
d.int32Val: 4711
d.float64Val: 0,000000
d.int8Array: 1 2 3 4 5 6 7 8 9 10 
d.stringVal: empty
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPong
d.int32Val: 815
d.float64Val: 3,141234
d.int8Array: 100 101 102 103 104 105 106 107 108 109 
d.stringVal: some contents
/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPong
quit
echo: quit

h2. Summary

Within the first loop a integer value will be incremented from ??MrPong?? and sent back to ??MrPing??. Is long as the guard is true ??MrPing?? sends back the value.

Within the ??next?? transition, ??MrPing?? creates a data class and sends the default values. Than ??MrPing?? changes the values and sends the class again. At this point you should note that during the send operation, a copy of the data class will be created and sent. Otherwise it would not be possible to send the same object two times, even more it would not be possible to send a stack object at all. 
In later versions of eTrice a additional mechanism to send references will be implemented. However, keep in mind that sending references takes the responsibility of the life cycle of the sent object to the user. It looks simple but is a very common source of failures.  



h1. ROOM Concepts

h2. Main Concepts

Back to the top