
eTrice

Henkrik Renz-Reichert Thomas Schütz

February 18, 2013

Contents

1 eTrice Overview 5

1.1 What is eTrice? . 5

1.2 Reduction of Complexity . 5

2 Introduction to the ROOM Language 7

2.1 Scope of ROOM . 7

2.1.1 Where does it come from? 7

2.1.2 Which kind of SW-Systems will be addressed? 8

2.1.3 What is the relation between OOP and ROOM? 8

2.1.4 What are the bene�ts of ROOM? 10

2.1.5 Which consequences must be taken into account? 10

2.2 Basic Concepts . 11

2.2.1 Actor, Port, Protocol . 11

2.2.2 Hierarchy in Structure and Behavior 12

2.2.3 Layering . 13

2.2.4 Run to Completion . 13

2.3 Execution Models . 14

2.3.1 Communication Methods 14

2.3.2 Execution Methods . 14

2.3.3 Execution Models . 15

3 Working with the eTrice Tutorials 16

4 Setting up the Workspace for Java Projects 17

5 Tutorial HelloWorld for Java 22

5.1 Scope . 22

5.2 Create a new model from scratch 22

5.3 Create a state machine . 25

1

CONTENTS 2

5.4 Build and run the model . 26

5.5 Open the Message Sequence Chart 29

5.6 Summary . 29

6 Tutorial Blinky (Java) 30

6.1 Scope . 30

6.2 Create a new model from scratch 31

6.3 Add two additional actor classes 31

6.4 Create a new protocol . 33

6.5 Import the Timing Service . 34

6.6 Finish the model structure . 37

6.7 Implement the Behavior . 39

6.8 Summary . 43

7 Tutorial Sending Data (Java) 45

7.1 Scope . 45

7.2 Create a new model from scratch 45

7.3 Add a data class . 46

7.4 Create a new protocol . 46

7.5 Create MrPing and MrPong Actors 47

7.6 De�ne Actor Structure and Behavior 48

7.6.1 De�ne MrPongs behavior 49

7.6.2 De�ne MrPing behavior 51

7.7 De�ne the top level . 54

7.8 Generate and run the model . 55

7.9 Summary . 56

8 Tutorial Pedestrian Lights (Java) 57

8.1 Scope . 57

8.2 Setup the model . 58

8.3 Why does it work and why is it safe? 60

9 Tutorial Remove C-Comment (C) 61

9.1 Scope . 61

9.2 Create a new model from scratch 61

9.3 Create your own data type . 62

9.4 Create the model . 63

9.5 Generate, build and run the model 65

9.6 Summary . 66

CONTENTS 3

10 ROOM Concepts 67

10.1 Actors . 67

10.1.1 Description . 67

10.1.2 Motivation . 67

10.1.3 Notation . 67

10.1.4 Details . 67

10.2 Protocols . 69

10.2.1 Description . 69

10.2.2 Motivation . 69

10.2.3 Notation . 70

10.3 Ports . 70

10.3.1 Description . 70

10.3.2 Motivation . 70

10.3.3 Notation . 70

10.4 DataClass . 72

10.4.1 Description . 72

10.4.2 Notation . 72

10.5 Layering . 73

10.5.1 Description . 73

10.5.2 Notation . 73

10.6 Finite State Machines . 73

10.6.1 Description . 73

10.6.2 Motivation . 75

10.6.3 Notation . 75

10.6.4 Examples . 76

11 eTrice Features 78

11.1 Codegenerators . 78

11.1.1 Java Generator . 78

11.1.2 C++ Generator . 78

11.1.3 C Generator . 78

12 Codegenerators 79

13 Runtimes 80

14 eTrice Models and Their Relations 81

14.1 The ROOM Model . 82

14.2 The Con�g Model . 84

CONTENTS 4

14.3 The Physical Model . 84

14.4 The Mapping Model . 86

15 eTrice Developer's Reference 88

15.1 Architecture . 88

15.1.1 Editor and Generator Components 89

15.1.2 Runtimes . 90

15.1.3 Unit Tests . 90

15.2 Component Overview . 90

15.2.1 Room Language Overview 90

15.2.2 Con�g Language Overview 92

15.2.3 Aggregation Layer Overview 92

15.2.4 Generator Overview . 94

Chapter 1

eTrice Overview

1.1 What is eTrice?

eTrice provides an implementation of the ROOM modeling language (Real Time
Object Oriented Modeling) together with editors, code generators for Java, C++
and C code and exemplary target middleware.

The model is de�ned in textual form (Xtext) with graphical editors (Graphiti)
for the structural and behavioral (i.e. state machine) parts.

1.2 Reduction of Complexity

eTrice is all about the reduction of complexity:

• structural complexity

� by explicit modeling of hierarchical Actor containment, layering and
inheritance

• behavioral complexity

� by hierachical statemachines with inheritance

• teamwork complexity

� because loosely coupled Actors provide a natural way to structure
team work

� since textual model notation allows simple branching and merging

• complexity of concurrent & distributed systems

� because loosely coupled Actors are deployable to threads, processes,
nodes

• complexity of variant handling and reuse (e.g. for product lines)

� by composition of existing Actors to new structures

5

CHAPTER 1. ETRICE OVERVIEW 6

� since Protocols and Ports make Actors replaceable

� by inheritance for structure, behavior and Protocols

� by making use of model level libraries

• complexity of debugging

� model level debugging: state machine animation, data inspection and
manipulation, message injection, generated message sequence charts

� model checking easier for model than for code (detect errors before
they occur)

Chapter 2

Introduction to the ROOM
Language

2.1 Scope of ROOM

This chapter will give a rough overview of what ROOM (R
	
eal time O

	
bject O

	riented M
	
odeling) is and what it is good for. It will try to answer the following

questions:

• Where does it come from?

• Which kind of SW-Systems will be addressed?

• What is the relation between OOP and ROOM?

• What are the bene�ts of ROOM?

• Which consequences must be taken into account?

2.1.1 Where does it come from?

Room was developed in the 1990th on the background of the upcoming mobile
applications with the goal to manage the complexity of such huge SW-Systems.
From the very beginning ROOM has focused on a certain type of SW-Systems
and is, in contrast to the UML, well suited for this kind of systems. In this sense,
ROOM is a DSL (Domain Speci�c Language) for distributed, event driven, real
time systems.

Bran Selic, Garth Gullekson and Paul T. Ward have published the concepts 1994
in the book Real-Time Object-Oriented Modeling. The company object
time TMdeveloped a ROOM tool which was taken over by Rational SW TMand
later on by IBM TM. The company Protos Software Gmbh TMalso developed
a ROOM tool called Trice TMfor control software for production machines and
automotive systems. Trice TMis the predecessor of eTrice (see Introduction to
eTrice).

7

CHAPTER 2. INTRODUCTION TO THE ROOM LANGUAGE 8

From our point of view ROOM provides still the clearest, simplest, most com-
plete and best suited modeling concepts for the real time domain. All later
proposals like the UML do not �t as well to this kind of problems.

2.1.2 Which kind of SW-Systems will be addressed?

As mentioned before ROOM addresses distributed, event driven, real time sys-
tems. But what is a *real time system*? ROOM de�nes a set of properties
which are typical for a real time system. These properties are:

• Timeliness

• Dynamic internal structure

• Reactiveness

• Concurrency

• Distribution

• Reliability

Each of these properties has potential to make SW development complex. If a
given system can be characterized with a combination of or all of these proper-
ties, ROOM might be applied to such a system.

As an example take a look at a washing machine. The system has to react on
user interactions, has to handle some error conditions like a closed water tap or
a defective lye pump. It has to react simultaneously to all these inputs. It has
to close the water valve in a certain time to avoid �ooding the basement. So,
the system can be characterized as timely, concurrent and reactive. As long as
the washing machine does not transform to a laundry drier by itself, the system
has no dynamic internal structure and as long as all functions are running on a
single micro controller the (SW)-system is not distributed. ROOM �ts perfect
to such a system.

A SW system which mainly consists of data transformations like signal/image
processing or a loop controller (e.g. a PID controller) cannot be characterized
with any of the above mentioned properties. However, in the real world most
of the SW systems will be a combination of both. ROOM can be combined
with such systems, so that for example an actor provides a *run to completion*
context for calculating an image processing algorithm or a PID controller.

2.1.3 What is the relation between OOP and ROOM?

The relation between classical object oriented programming and ROOM is com-
parable to the relation between assembler programming and C programming.
It provides a shift of the object paradigm. As the picture shows, the classic
object paradigm provides some kind of information hiding. Attributes can be
accessed via access methods. Logical higher level methods provide the requested
behavior to the user.

CHAPTER 2. INTRODUCTION TO THE ROOM LANGUAGE 9

As the �gure illustrates, the classical object paradigm does not care about con-
currency issues. The threads of control will be provided by the underlying
operating system and the user is responsible to avoid access violations by using
those operating system mechanisms directly (semaphore, mutex).

ROOM provides the concept of a logical machine (called actor) with its own
thread of control. It provides some kind of cooperative communication infras-
tructure with *run to completion* semantic. That makes developing of business
logic easy and safe (see basic concepts). The logical machine provides an encap-
sulation shell including concurrency issues (see chapter Run to completion).

CHAPTER 2. INTRODUCTION TO THE ROOM LANGUAGE 10

This thinking of an object is much more general than the classic one.

2.1.4 What are the bene�ts of ROOM?

ROOM has a lot of bene�ts and it depends on the users point of view which
is the most important one. From a general point of view the most important
bene�t is, that ROOM allows to create SW systems very e�cient, robust and
safe due to the fact that it provides some abstract, high level modeling concepts
combined with code generation and a small e�cient runtime environment.

In detail:

• ROOM models contain well de�ned interfaces (protocols), which makes it
easy to reuse components in di�erent applications or e.g. in a test harness.

• Graphical modeling makes it easy to understand, maintain and share code
with other developers

• Higher abstraction in combination with automated code generation pro-
vides very e�cient mechanisms to the developer.

• ROOM provides graphical model execution, which makes it easy to un-
derstand the application or �nd defects in a very early phase.

2.1.5 Which consequences must be taken into account?

Generating code from models will introduce some overhead in terms of memory
footprint as well as performance. For most systems the overhead will be neg-
ligible. However, the decision for using ROOM should be made explicitly and
it is always a trade o� between development costs, time to market and costs in

CHAPTER 2. INTRODUCTION TO THE ROOM LANGUAGE 11

Table 2.1: Actor and Protocol Example

Actor with Subactors Protocol De�nition

terms of a little bit more of memory and performance. Thanks to the power-
ful component model, ROOM is especially well suited for the development of
software product lines with their need for reusable core assets.

Care must be taken during the introduction of the new methodology. Due to
the fact that ROOM provides a shift of the object paradigm, developers and
teams need a phase of adaption. Every bene�t comes at a price.

2.2 Basic Concepts

2.2.1 Actor, Port, Protocol

The basic elements of ROOM are the actors with their ports and protocols.
The protocol provides a formal interface description. The port is an interaction
point where the actor interacts with its outside world. Each port has exactly
one protocol attached. The sum of all ports builds up the complete interface
of an actor. Each port can receive messages, with or without data, which are
de�ned in the attached protocol. Each message will be handled by the actors
behavior (state machine) or will be delegated to the actors internal structure.

The actor provides access protection for its own attributes (including complex
types (classical objects)), including concurrency protection. An actor has nei-
ther public attributes nor public operations. The only interaction with the
outside world takes place via interface ports. This ensures a high degree of
reusability on actor level and provides an e�ective and safe programming model
to the developer.

Receiving a message via a port will trigger the internal state machine. A tran-
sition will be executed depending on the message and the current state. Within
this transition, detail level code will be executed and response messages can be
sent.

With this model, a complex behavior can be divided into many relatively simple,
linked actors. To put it the other way round: The complex behavior will be
provided by a network of relatively simple components which are communicating
with each other via well de�ned interfaces.

CHAPTER 2. INTRODUCTION TO THE ROOM LANGUAGE 12

2.2.2 Hierarchy in Structure and Behavior

ROOM provides two types of hierarchy. Behavioral hierarchy and structural
hierarchy. Structural hierarchy means that actors can be nested to arbitrary
depth. Usually you will add more and more details to your application with each
nesting level. That means you can focus yourself on any level of abstraction with
always the same element, the actor. Structural hierarchy provides a powerful
mechanism to divide your problem in smaller pieces, so that you can focus on
the level of abstraction you want to work on.

The actor's behavior will be described with a state machine. A state in turn
may contain sub states. This is another possibility to focus on an abstraction
level. Take the simple FSM from the blinky actor from the blinky tutorial.

Top level:

blinking Sub machine:

From an abstract point of view there is a state blinking. But a simple LED is
not able to blink autonomously. Therefore you have to add more details to your
model to make a LED blinking, but for the current work it is not of interest
how the blinking is realized. This will be done in the next lower level of the
hierarchy.

This simple example might give an idea how powerful this mechanisms is.

CHAPTER 2. INTRODUCTION TO THE ROOM LANGUAGE 13

The hierarchical FSM provides a rich tool box to describe real world problems
(see room concepts).

2.2.3 Layering

Layering is another well known form of abstraction to reduce complexity in
the structure of systems. ROOM is probably the only language that supports
Layering directly as language feature. Layering can be expressed in ROOM by
Actors with specialized Ports, called Service Access Points (*SAP*) and Service
Provision Points (*SPP*).

The Actor that provides a service implements an SPP and the client of that ser-
vice implements an SAP. The Layer Connection connects all SAPs of a speci�c
Protocol within an Actor hierarchy with an SPP that implements the service.
From the Actors point of view, SAPs and SPPs behave almost like regular ports.

The Example shows a layered model. The Layer Connections de�ne e.g. that
the ApplicationLayer can only use the services of the ServiceLayer and the
CommunicationLayer. Actors inside the ApplicationLayer that implement an
SAP for those services are connected directly to the implementation of the
services. Layering and actor hierarchies with port to port connections can be
mixed on every level of granularity.

2.2.4 Run to Completion

Run to completion (RTC) is a very central concept of ROOM. It enables
the developer to concentrate on the functional aspects of the system. The
developer doesn't have to care about concurrency issues all the time. This

CHAPTER 2. INTRODUCTION TO THE ROOM LANGUAGE 14

job is concentrated to the system designer in a very �exible way. What does
run to completion mean: RTC means that an actor, which is processing
a message, can not receive the next message as long as the processing of the
current message has been �nished. Receiving of the next message will be queued
from the underlying run time system.

Note: It is very important not to confuse run to completion and preemption.
Run to completion means that an actor will �nish the processing of a message
before he can receive a new one (regardless of its priority). That does not mean
that an actor cannot be preempted from an higher priority thread of control.
But even a message from this higher prior thread of control will be queued until
the current processing has been �nished.

With this mechanism all actor internal attributes and data structures are pro-
tected. Due to the fact that multiple actors share one thread of control, all
objects are protected which are accessed from one thread of control but multi-
ple actors. This provides the possibility to decompose complex functionality to
several actors without the risk to produce access violations or dead locks.

2.3 Execution Models

Since from ROOM models executable code can be generated, it is important to
de�ne the way the actors are executed and communicate with each other. The
combination of communication and execution is called the Execution Model.
Currently the eTrice tooling only supports the message driven and parts of
the data driven execution model. In future releases more execution models
will be supported, depending on the requirements of the community.

2.3.1 Communication Methods

• message driven (asynchronous, non blocking, no return value): Usually
the message driven communication is implemented with message queues.
Message queues are inherently asynchronous and enable a very good de-
coupling of the communicating parties.

• data driven (asynchronous, non blocking, no return value): In data
driven communication sender and receiver often have a shared block of
data. The sender writes the data and the receiver polls the data.

• function call (synchronous, blocking, return value): Regular function
call as known in most programming languages.

2.3.2 Execution Methods

• execution by receive event: The message queue or the event dispatcher
calls a receive event function of the message receiver an thereby executes
the processing of the event.

• polled execution: The objects are processed by a cyclic execute call

CHAPTER 2. INTRODUCTION TO THE ROOM LANGUAGE 15

• execution by function call: The caller executes the called object via
function call

2.3.3 Execution Models

In todays embedded systems in most cases one or several of the following exe-
cution models are used:

message driven

The message driven execution model is a combination of message driven com-
munication and execution by receive event. This model allows for distributed
systems with a very high throughput. It can be deterministic but the determin-
ism is hard to proof. This execution model is often found in telecommunication
systems and high performance automation control systems.

data driven

The data driven execution model is a combination of data driven communication
and polled execution. This model is highly deterministic and very robust, but
the polling creates a huge performance overhead. The determinism is easy to
proof (simple mathematics). The execution model is also compatible with the
execution model of control software generated by Tools like Matlab(TM) and
LabView(TM). This model is usually used for systems with requirements for
safety, such as automotive and avionic systems.

synchronous

The synchronous execution model could also be called simple function calls.
This model is in general not very well suited to support the run to completion
semantic typical for ROOM models, but could also be generated from ROOM
models. With this execution model also lower levels of a software system, such
as device drivers, could be generated from ROOM models.

Chapter 3

Working with the eTrice
Tutorials

The eTrice Tutorials will help you to learn and understand the eTrice tool and
concepts. ETrice supports several target languages. The concepts will not be
explained for each language.

Most of the common concepts will be described for Java as target language. To
start with a new language the �rst steps to setup the workspace and to generate
and run the �rst model will be described also. Target language speci�c aspects
will be described as well.

Therefore the best way to start with eTrice is to follow the Java Tutorials and
after that switch to your target language.

16

Chapter 4

Setting up the Workspace for
Java Projects

ETrice generates code out of ROOM models. The code generator and the gener-
ated code relies on a runtime framework and on some ready to use model parts.
This parts provide services like:

• messaging

• logging

• timing

Additionally some tutorial models will be provided to make it easy to start
with eTrice. All this parts must be available in our workspace before you can
start working. After installation of eclipse (juno) and the eTrice plug in, your
workspace should look like this:

17

CHAPTER 4. SETTING UP THE WORKSPACE FOR JAVA PROJECTS18

Just the eTrice menu item is visible from the eTrice tool. From the File menu
select File->New->Project

Open the eTrice tab and select eTrice Java Runtime

Press Next and Finish to install the Runtime into your workspace.

CHAPTER 4. SETTING UP THE WORKSPACE FOR JAVA PROJECTS19

Do the same steps for eTrice Java Modellib and eTrice Java Tutorials. To avoid
temporary error markers you should keep the proposed order of installation.
The resulting workspace should look like this:

Now workspace is set up and you can perform the tutorials or start with your
work.

CHAPTER 4. SETTING UP THE WORKSPACE FOR JAVA PROJECTS20

The tutorial models are available in the org.eclipse.etrice.tutorials project.
All tutorials are ready to generate and run without any changes. To start
the code generator simply run gen_org.eclipse.etrice.tutorials.launch as
gen_org.eclipse.etrice.tutorials.launch:

After generation for each tutorial a java �le called SubSys-
tem_ModelnameRunner.java is generated. To run the model simply
run this �le as a java application:

CHAPTER 4. SETTING UP THE WORKSPACE FOR JAVA PROJECTS21

To stop the application type quit in the console window.

Performing the tutorials will setup an dedicated project for each tutorial. There-
fore there are some slight changes especially whenever a path must be set (e.g.
to the model library) within your own projects. All this is described in the
tutorials.

Chapter 5

Tutorial HelloWorld for Java

5.1 Scope

In this tutorial you will build your �rst very simple eTrice model. The goal is to
learn the work �ow of eTrice and to understand a few basic features of ROOM.
You will perform the following steps:

1. create a new model from scratch

2. add a very simple state machine to an actor

3. generate the source code

4. run the model

5. open the message sequence chart

Make sure that you have set up the workspace as described in Setting up the
workspace.

5.2 Create a new model from scratch

The easiest way to create a new eTrice Project is to use the eclipse project
wizard. From the eclipse �le menu select File->New->Project and create a
new eTrice project and name it HelloWorld.

22

CHAPTER 5. TUTORIAL HELLOWORLD FOR JAVA 23

The wizard creates everything that is needed to create, build and run an eTrice
model. The resulting project should look like this:

CHAPTER 5. TUTORIAL HELLOWORLD FOR JAVA 24

Within the model directory the model �le HelloWorld.room was created. Open
the HelloWorld.room �le and delete the contents of the �le. Open the content
assist with Ctrl+Space and select model skeleton.

Edit the template variables by typing the new names and jumping with Tab
from name to name.

The resulting model code should look like this:

RoomModel HelloWorld {

LogicalSystem System_HelloWorld {

SubSystemRef subsystem : SubSystem_HelloWorld

}

SubSystemClass SubSystem_HelloWorld {

ActorRef application : HelloWorldTop

}

ActorClass HelloWorldTop {

}

}

The goal of eTrice is to describe distributed systems on a logical level. In the
current version not all elements will be used. But as prerequisite for further
versions the following elements can be de�ned:

• the LogicalSystem (currently optional)

• at least one SubSystemClass (mandatory)

• at least one ActorClass (mandatory)

The LogicalSystem represents the complete distributed system and contains at
least one SubSystemRef. The SubSystemClass represents an address space and
contains at least one ActorRef. The ActorClass is the building block of which
an application will be built of. It is in general a good idea to de�ne a top level
actor that can be used as reference within the subsystem.

The outline view of the textual ROOM editor shows the main modeling elements
in an easy to navigate tree.

CHAPTER 5. TUTORIAL HELLOWORLD FOR JAVA 25

5.3 Create a state machine

We will implement the Hello World code on the initial transition of the Hel-
loWorldTop actor. Therefore open the state machine editor by right clicking
the HelloWorldTop actor in the outline view and select Edit Behavior.

The state machine editor will be opened. Drag and drop an Initial Point from
the tool box to the diagram into the top level state. Drag and drop a State
from the tool box to the diagram. Con�rm the dialogue with ok. Select the
Transition in the tool box and draw the transition from the Initial Point to the
State. Open the transition dialogue by double clicking the transition arrow and
�ll in the action code.

System.out.println("Hello World !");

The result should look like this:

CHAPTER 5. TUTORIAL HELLOWORLD FOR JAVA 26

Save the diagram and inspect the model �le. Note that the textual representa-
tion was created after saving the diagram.

5.4 Build and run the model

Now the model is �nished and source code can be generated. The project wizard
has created a launch con�guration that is responsible for generating the source
code. From HelloWorld/ right click gen_HelloWorld.launch and run it as
gen_HelloWorld. All model �les in the model directory will be generated.

CHAPTER 5. TUTORIAL HELLOWORLD FOR JAVA 27

The code will be generated to the src-gen directory. The main function will be
contained in SubSystem_HelloWorldRunner.java. Select this �le and run
it as Java application.

CHAPTER 5. TUTORIAL HELLOWORLD FOR JAVA 28

The Hello World application starts and the string will be printed on the console
window. To stop the application the user must type quit in the console window.

CHAPTER 5. TUTORIAL HELLOWORLD FOR JAVA 29

5.5 Open the Message Sequence Chart

During runtime the application produced a MSC and wrote it to a �le. Open
HelloWorld/tmp/log/SubSystem_HelloWorld_Async.seq using Trace2UML (it
is open source and can be obtained from http://trace2uml.tigris.org/). You
should see something like this:

5.6 Summary

Now you have generated your �rst eTrice model from scratch. You can switch
between diagram editor and model (.room �le) and you can see what will be
generated during editing and saving the diagram �les. You should take a look
at the generated source �les to understand how the state machine is generated
and the life cycle of the application. The next tutorials will deal with more
complex hierarchies in structure and behavior.

Chapter 6

Tutorial Blinky (Java)

6.1 Scope

This tutorial describes how to use the TimingService, how to combine a gener-
ated model with manual code and how to model a hierarchical state machine.
The idea of the tutorial is to switch a LED on and o�. The behavior of the LED
should be: blinking in a one second interval for 5 seconds, stop blinking for 5
seconds, blinking, stop,... For this exercise we will use a little GUI class that will
be used in more sophisticated tutorials too. The GUI simulates a pedestrian
tra�c crossing. For now, just a simple LED simulation will be used from the
GUI.

After the exercise is created you must copy the GUI to your src directory (see
below).

The package contains four java classes which implements a small window with
a 3-light tra�c light which simulates the signals for the car tra�c and a 2-light
tra�c light which simulates the pedestrian signals.

The GUI looks like this:

Within this tutorial we will just toggle the yellow light.

You will perform the following steps:

1. create a new model from scratch

2. de�ne a protocol

30

CHAPTER 6. TUTORIAL BLINKY (JAVA) 31

3. create an actor structure

4. create a hierarchical state machine

5. use the prede�ned TimingService

6. combine manual code with generated code

7. build and run the model

8. open the message sequence chart

6.2 Create a new model from scratch

Remember the exercise HelloWorld. Create a new eTrice project and name it
Blinky.

To use the GUI please copy the package org.eclipse.etrice.tutorials.PedLightGUI
from org.eclipse.etrice.tutorials/src to your *src* directory Blinky/src. For this
tutorial you must remove the error markers by editing the �le Pedestrian-
LightWndNoTcp.java. Appropriate comments are provided to remove the error
markers for this turorial.

Open the Blinky.room �le and copy the following code into the �le or use content
assist to create the model.

RoomModel Blinky {

LogicalSystem System_Blinky {

SubSystemRef subsystem : SubSystem_Blinky

}

SubSystemClass SubSystem_Blinky {

ActorRef application : BlinkyTop

}

ActorClass BlinkyTop {

}

}

6.3 Add two additional actor classes

Position the cursor outside any class de�nition and right click the mouse within
the editor window. From the context menu select Content Assist

CHAPTER 6. TUTORIAL BLINKY (JAVA) 32

Select ActorClass - actor class skeleton and name it Blinky.

CHAPTER 6. TUTORIAL BLINKY (JAVA) 33

Repeat the described procedure and name the new actor BlinkyController.

With Ctrl+Shift+F you can beautify the model code.

Save the model and visit the outline view.

6.4 Create a new protocol

With the help of Content Assist create a ProtocolClass and name it Blinky-
ControlProtocol. Inside the brackets use the Content Assist (CTRL+Space) to
create two incoming messages called start and stop.

The resulting code should look like this:

CHAPTER 6. TUTORIAL BLINKY (JAVA) 34

With Ctrl-Shift+F or selecting Format from the context menu you can format
the text. Note that all elements are displayed in the outline view.

6.5 Import the Timing Service

Switching on and o� the LED is timing controlled. The timing service is pro-
vided from the model library and must be imported before it can be used from
the model.

This is the �rst time you use an element from the modellib. Make sure that
your Java Build Path has the appropriate entry to the modellib. Otherwise the
jave code, which will be generated from the modellib, can not be referenced.
(right click to Blinky and select properties. Select the Java Build Path tab)

CHAPTER 6. TUTORIAL BLINKY (JAVA) 35

After the build path is set up return to the model and navigate the cursor at
the beginning of the model and import the timing service:

RoomModel Blinky {

import room.basic.service.timing.* from

"../../org.eclipse.etrice.modellib/models/TimingService.room"

LogicalSystem System_Blinky {

SubSystemRef subsystem: SubSystem_Blinky

}

}

...

Make sure that the path �ts to your folder structure. The original tutorial code
is di�erent due to the folder structure.

Now it can be used within the model. Right click to SubSystem_Blinky
within the outline view. Select Edit Structure. The application is already
referenced in the subsystem. Drag and Drop an ActorRef to the SubSys-
tem_Blinky and name it timingService. From the actor class drop down list
select room.basic.service.timing.ATimingService. Draw a LayerConnection from
application to each service provision point (SPP) of the timingService. The re-
sulting structure should look like this:

CHAPTER 6. TUTORIAL BLINKY (JAVA) 36

The current version of eTrice does not provide a graphical element for a service
access point (SAP). Therefore the SAPs to access the timing service must be
added in the .room �le. Open the Blinky.room �le and navigate to the Blinky
actor. Add the following line to the structure of the actor:

SAP timer: room.basic.service.timing.PTimeout

Do the same thing for BlinkyController.

The resulting code should look like this:

CHAPTER 6. TUTORIAL BLINKY (JAVA) 37

6.6 Finish the model structure

From the outline view right click to Blinky and select Edit Structure. Drag
and Drop an Interface Port to the boarder of the Blinky actor. Note that an
interface port is not possible inside the actor. Name the port ControlPort and
select BlinkyControlProtocol from the drop down list. Uncheck Conjugated and
Is Relay Port. Click ok. The resulting structure should look like this:

CHAPTER 6. TUTORIAL BLINKY (JAVA) 38

Repeat the above steps for the BlinkyController. Make the port Conjugated

Keep in mind that the protocol de�nes start and stop as incoming messages.
Blinky receives this messages and therefore Blinky 's ControlPort must be a
regular port and BlinkyController 's ControlPort must be a conjugated port.

From the outline view right click BlinkyTop and select Edit Structure.

Drag and Drop an ActorRef inside the BlinkyTop actor. Name it blinky. From
the actor class drop down list select Blinky. Do the same for controller. Connect
the ports via the binding tool. The resulting structure should look like this:

CHAPTER 6. TUTORIAL BLINKY (JAVA) 39

6.7 Implement the Behavior

The application should switch on and o� the LED for 5 seconds in a 1 second
interval, then stop blinking for 5 seconds and start again. To implement this
behavior we will implement two FSMs. One for the 1 second interval and one
for the 5 second interval. The 1 second blinking should be implemented in
Blinky. The 5 second interval should be implemented in BlinkyController. First
implement the Controller.

Right click to BlinkyController and select Edit Behavior. Drag and Drop the
Initial Point and two States into the top state. Name the states on and o�.
Use the Transition tool to draw transitions from init to on from on to o� and
from o� to on.

Open the transition dialog by double click the arrow to specify the trigger event
and the action code of each transition. Note that the initial transition does not
have a trigger event.

The transition dialog should look like this:

The de�ned ports will be generated as a member attribute of the actor class

CHAPTER 6. TUTORIAL BLINKY (JAVA) 40

from type of the attached protocol. So, to send e message you must state
port.message(param);. In this example ControlPort.start() sends the start mes-
sage via the ControlPort to the outside world. Assuming that Blinky is con-
nected to this port, the message will start the one second blinking FSM. It is
the same thing with the timer. The SAP is also a port and follows the same
rules. So it is clear that timer.Start(5000); will send the Start message to the
timing service. The timing service will send a timeoutTick message back after
5000ms.

Within each transition the timer will be restarted and the appropriate message
will be sent via the ControlPort.

The resulting state machine should look like this: (Note that the arrows peak
changes if the transition contains action code.)

Save the diagram and inspect the Blinky.room �le. The BlinkyController should
look like this:

CHAPTER 6. TUTORIAL BLINKY (JAVA) 41

Now we will implement Blinky. Due to the fact that Blinky interacts with the
GUI class a view things must to be done in the model �le.

Double click Blinky in the outline view to navigate to Blinky within the model
�le. Add the following code: (type it or simply copy it from the tutorial project)

usercode1 will be generated at the beginning of the �le, outside the class de�ni-
tion. usercode2 will be generated within the class de�nition. The code imports
the GUI class and instantiates the window class. Attributes for the carLights
and pedLights will be declared to easily access the lights in the state machine.

CHAPTER 6. TUTORIAL BLINKY (JAVA) 42

The Operation destroyUser() is a prede�ned operation that will be called during
shutdown of the application. Within this operation, cleanup of manual coded
classes can be done.

Now design the FSM of Blinky. Remember, as the name suggested blinking is
a state in which the LED must be switched on and o�. We will realize that by
an hierarchical FSM in which the blinking state has two sub states.

Open the behavior diagram of Blinky by right clicking the Blinky actor in the
outline view. Create two states named blinking and o�. Right click to blinking
and create a subgraph.

Create the following state machine. The trigger events between on and o� are
the timeoutTick from the timer port.

Create entry code for both states by right clicking the state and select Edit
State...

Entry code of on is:

timer.Start(1000);

carLights.setState(TrafficLight3.YELLOW);

Entry code of o� is:

CHAPTER 6. TUTORIAL BLINKY (JAVA) 43

timer.Start(1000);

carLights.setState(TrafficLight3.OFF);

Navigate to the Top level state by double clicking the /blinking state. Create
the following state machine:

The trigger event from o� to blinking is the start event from the Control-
Port.The trigger event from blinking to o� is the stop event from the Control-
Port. Note: The transition from blinking to o� is a so called group transition.
This is a outgoing transition from a super state (state with sub states) with-
out specifying the concrete leave state (state without sub states). An incoming
transition to a super state is called history transition.

Action code of the init transition is:

carLights = light.getCarLights();

pedLights = light.getPedLights();

carLights.setState(TrafficLight3.OFF);

pedLights.setState(TrafficLight2.OFF);

Action code from blinking to o� is:

timer.Kill();

carLights.setState(TrafficLight3.OFF);

The model is complete now. You can run and debug the model as described in
getting started. Have fun.

The complete model can be found in /org.eclipse.etrice.tutorials/model/Blinky.

6.8 Summary

Run the model and take a look at the generated MSCs. Inspect the generated
code to understand the runtime model of eTrice. Within this tutorial you have
learned how to create a hierarchical FSM with group transitions and history
transitions and you have used entry code. You are now familiar with the basic

CHAPTER 6. TUTORIAL BLINKY (JAVA) 44

features of eTrice. The further tutorials will take this knowledge as a precondi-
tion.

Chapter 7

Tutorial Sending Data (Java)

7.1 Scope

This tutorial shows how data will be sent in a eTrice model. Within the example
you will create two actors (MrPing and MrPong). MrPong will simply loop back
every data it received. MrPing will send data and verify the result.

You will perform the following steps:

1. create a new model from scratch

2. create a data class

3. de�ne a protocol with attached data

4. create an actor structure

5. create two simple state machines

6. build and run the model

7.2 Create a new model from scratch

Remember exercise HelloWorld. Create a new eTrice project and name it Send-
ingData. Open the SendingData.room �le and copy the following code into the
�le or use content assist to create the model.

RoomModel SendingData {

LogicalSystem SendingData_LogSystem {

SubSystemRef SendingDataAppl:SendingData_SubSystem

}

SubSystemClass SendingData_SubSystem {

ActorRef SendigDataTopRef:SendingDataTop

}

ActorClass SendingDataTop {

}

}

45

CHAPTER 7. TUTORIAL SENDING DATA (JAVA) 46

7.3 Add a data class

Position the cursor outside any class de�nition and right click the mouse
within the editor window. From the context menu select Content Assist (or
Ctrl+Space).

Select DataClass - data class skeleton and name it DemoData. Remove the
operations and add the following Attributes:

DataClass DemoData {

Attribute int32Val: int32 = "4711"

Attribute int8Array [10]: int8 = "{1,2,3,4,5,6,7,8,9,10}"

Attribute float64Val: float64 = "0.0"

Attribute stringVal: string = "\"empty\""

}

Save the model and visit the outline view. Note that the outline view contains
all data elements as de�ned in the model.

7.4 Create a new protocol

With the help of Content Assist create a ProtocolClass and name it PingPong-
Protocol. Create the following messages:

ProtocolClass PingPongProtocol {

incoming {

Message ping(data: DemoData)

Message pingSimple(data:int32)

}

outgoing {

Message pong(data: DemoData)

Message pongSimple(data:int32)

CHAPTER 7. TUTORIAL SENDING DATA (JAVA) 47

}

}

7.5 Create MrPing and MrPong Actors

With the help of Content Assist create two new actor classes and name them
MrPing and MrPong. The resulting model should look like this:

RoomModel SendingData {

LogicalSystem SendingData_LogSystem {

SubSystemRef SendingDataAppl: SendingData_SubSystem

}

SubSystemClass SendingData_SubSystem {

ActorRef SendigDataTopRef: SendingDataTop

}

ActorClass SendingDataTop { }

DataClass DemoData {

Attribute int32Val: int32 = "4711"

Attribute int8Array [10]: int8 = "{1,2,3,4,5,6,7,8,9,10}"

Attribute float64Val: float64 = "0.0"

Attribute stringVal: string = "\"empty\""

}

ProtocolClass PingPongProtocol {

incoming {

Message ping(data: DemoData)

Message pingSimple(data: int32)

}

outgoing {

Message pong(data: DemoData)

Message pongSimple(data: int32)

}

}

ActorClass MrPing {

Interface { }

Structure { }

Behavior { }

}

ActorClass MrPong {

Interface { }

Structure { }

Behavior { }

CHAPTER 7. TUTORIAL SENDING DATA (JAVA) 48

}

}

The outline view should look like this:

7.6 De�ne Actor Structure and Behavior

Save the model and visit the outline view. Within the outline view, right click
on the MrPong actor and select Edit Structure. Select an Interface Port from
the toolbox and add it to MrPong. Name the Port PingPongPort and select
the PingPongProtocol.

Do the same with MrPing but mark the port as conjugated

CHAPTER 7. TUTORIAL SENDING DATA (JAVA) 49

7.6.1 De�ne MrPongs behavior

Within the outline view, right click MrPong and select Edit Behavior. Create
the following state machine:

The transition dialogues should look like this: For ping :

CHAPTER 7. TUTORIAL SENDING DATA (JAVA) 50

For pingSimple:

CHAPTER 7. TUTORIAL SENDING DATA (JAVA) 51

7.6.2 De�ne MrPing behavior

Within the outline view double click MrPing. Navigate the cursor to the be-
havior of MrPing. With the help of content assist create a new operation.

CHAPTER 7. TUTORIAL SENDING DATA (JAVA) 52

Name the operation printData and de�ne the DemoData as a parameter.

Fill in the following code:

Operation printData(d: DemoData) : void {

"System.out.printf(\"d.int32Val: %d\\n\",d.int32Val);"

"System.out.printf(\"d.float64Val: %f\\n\",d.float64Val);"

"System.out.printf(\"d.int8Array: \");"

"for(int i = 0; i<d.int8Array.length; i++) {"

"System.out.printf(\"%d \",d.int8Array[i]);}"

"System.out.printf(\"\\nd.stringVal: %s\\n\",d.stringVal);"

}

For MrPing create the following state machine: (Remember that you can copy
and paste the action code from the tutorial directory.)

The transition dialogues should look like this:

For init :

CHAPTER 7. TUTORIAL SENDING DATA (JAVA) 53

For wait1 :

For next :

CHAPTER 7. TUTORIAL SENDING DATA (JAVA) 54

For wait2 :

7.7 De�ne the top level

Open the Structure from SendingDataTop and add MrPing and MrPong as a
reference. Connect the ports.

CHAPTER 7. TUTORIAL SENDING DATA (JAVA) 55

The model is �nished now and can be found in
/org.eclipse.etrice.tutorials/model/SendingData.

7.8 Generate and run the model

Generate the code by right click to gen_SendingData.launch and run it as
gen_SendingData. Run the model. The output should look like this:

type 'quit' to exit

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

data: 1

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

data: 2

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

data: 3

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

data: 4

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

data: 5

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

data: 6

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

data: 7

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

data: 8

CHAPTER 7. TUTORIAL SENDING DATA (JAVA) 56

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

data: 9

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPongSimple

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

data: 10

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPong

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

/SendingData_SubSystem/SendigDataTopRef/ref1 -> looping

d.int32Val: 4711

d.float64Val: 0,000000

d.int8Array: 1 2 3 4 5 6 7 8 9 10

d.stringVal: empty

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPong

d.int32Val: 815

d.float64Val: 3,141234

d.int8Array: 100 101 102 103 104 105 106 107 108 109

d.stringVal: some contents

/SendingData_SubSystem/SendigDataTopRef/ref0 -> waitForPong

quit

echo: quit

7.9 Summary

Within the �rst loop an integer value will be incremented by MrPong and sent
back to MrPing. As long as the guard is true MrPing sends back the value.

Within the next transition, MrPing creates a data class and sends the default
values. ThenMrPing changes the values and sends the class again. At this point
you should note that during the send operation, a copy of the data class will be
created and sent. Otherwise it would not be possible to send the same object
two times, even more it would not be possible to send a stack object at all. This
type of data passing is called sending data by value. However, for performance
reasons some applications requires sending data by reference. In this case the
user is responsible for the life cycle of the object. In Java the VM takes care
of the life cycle of an object. This is not the case for C/C++. Consider that a
object which is created within a transition of a state machine will be destroyed
when the transition is �nished. The receiving FSM would receive an invalid
reference. Therefore care must be taken when sending references.

For sending data by reference you simply have to add the keyword ref to the
protocol de�nition.

Message ping(data: DemoData ref)

Make the test and inspect the console output.

Chapter 8

Tutorial Pedestrian Lights
(Java)

8.1 Scope

The scope of this tutorial is to demonstrate how to receive model messages from
outside the model. Calling methods which are not part of the model is simple
and you have already done this within the blinky tutorial (this is the other way
round: model => external code). Receiving events from outside the model is
a very common problem and a very frequently asked question. Therefore this
tutorial shows how an external event (outside the model) can be received by the
model.

This tutorial is not like hello world or blinky. Being familiar with the basic tool
features is mandatory for this tutorial. The goal is to understand the mechanism
not to learn the tool features.

The idea behind the exercise is, to control a Pedestrian crossing light. We will
use the same GUI as for the blinky tutorial but now we will use the REQUEST
button to start a FSM, which controls the tra�c lights.

The REQUEST must lead to a model message which starts the activity of the
lights.

There are several possibilities to receive external events (e.g. TCP/UDP Socket,
using OS messaging mechanism), but the easiest way is, to make a port usable
from outside the model. To do that a few steps are necessary:

57

CHAPTER 8. TUTORIAL PEDESTRIAN LIGHTS (JAVA) 58

1. specify the messages (within a protocol) which should be sent into the
model

2. model an actor with a port (which uses the speci�ed protocol) and connect
the port to the receiver

3. the external code should know the port (import of the port class)

4. the external code should provide a registration method, so that the actor
is able to allow access to this port

5. the port can be used from the external code

8.2 Setup the model

• Use the New Model Wizzard to create a new eTrice project and name it
PedLightsController.

• Copy the package org.eclipse.etrice.tutorials.PedLightGUI to your src di-
rectory (see blinky tutorial).

• In PedestrianLightWndNoTcp.jav uncomment line 15 (import), 36, 122
(usage) and 132-134 (registration). The error markers will disappear after
the code is generated from the model.

• Copy the model from
/org.eclipse.etrice.tutorials/model/PedLightsController to your model
�le, or run the model directly in the tutorial directory.

• Adapt the import statement to your path.

import room.basic.service.timing.* from

"../../org.eclipse.etrice.modellib/models/TimingService.room"

• Generate the code from the model.

• Add the org.eclipse.etrice.modellib to the Java Class Path of your project.

• All error markers should be disappeared and the model should be operable.

• Arrange the Structure and the Statemachines to understand the model

CHAPTER 8. TUTORIAL PEDESTRIAN LIGHTS (JAVA) 59

The GuiAdapter represents the interface to the external code. It registers its
ControlPort by the external code.

Visit the initial transition to understand the registration. The actor handles the
incoming messages as usual and controls the tra�c lights as known from blinky.

The Controller receives the start message and controls the timing of the lights.
Note that the start message will be sent from the external code whenever the
REQUEST button is pressed.

• Visit the model and take a closer look to the following elements:

1. PedControlProtocol => notice that the start message is de�ned as
usual

2. Initial transition of the GuiAdapter => see the registration

3. The Controller => notice that the Controller receives the external
message (not the GuiAdapter). The GuiAdapter just provides its

CHAPTER 8. TUTORIAL PEDESTRIAN LIGHTS (JAVA) 60

port and handles the incoming messages.

4. Visit the hand written code => see the import statement of the
protocol class and the usage of the port.

• Generate and test the model

• Take a look at the generated MSC => notice that the start message will
shown as if the GuiAdapter had sent it.

8.3 Why does it work and why is it safe?

The tutorial shows that it is generally possible to use every port from outside
the model as long as the port knows its peer. This is guaranteed by describing
protocol and the complete structure (especially the bindings) within the model.
The only remaining question is: Why is it safe and does not violate the run to
completion semantic. To answer this question, take a look at the MessageSer-
vice.java from the runtime environment. There you will �nd the receive method
which puts each message into the queue.

@Override

public synchronized void receive(Message msg) {

if (msg!=null) {

messageQueue.push(msg);

notifyAll(); // wake up thread to compute message

}

}

This method is synchronized. That means, regardless who sends the message,
the queue is secured. If we later on (e.g. for performance reasons in C/C++)
distinguish between internal and external senders (same thread or not), care
must be taken to use the external (secure) queue.

Chapter 9

Tutorial Remove C-Comment
(C)

9.1 Scope

In this tutorial you will create a more complex model. The model implements a
simple parser that removes comments (block comments and line comments) from
a C source �le. Therefore we will create two actors. One actor is responsible to
perform the �le operations, while the second actor implements the parser.

You will perform the following steps:

1. create a new model from scratch for C

2. de�ne a protocol

3. de�ne your own data type

4. create the structure and the behavior by yourself

5. generate, build and run the model

Make sure that you have set up the workspace as described in Setting up the
Workspace for C Projects.

9.2 Create a new model from scratch

Remember the following steps from the previous tutorials:

• select the C/C++ perspective

• From the main menue select File->New->C Project

• Name the project RemoveComment

• Project type is Executable / Empty C Project

61

CHAPTER 9. TUTORIAL REMOVE C-COMMENT (C) 62

• Toolchain is MinGW

• Add the folder model

• Add the model �le and name it RemoveComment.room

• Add the Xtext nature.

The workspace should look like this:

Create a launch con�guration for the C generator and add the include path and
library as described in HelloWorldC.

The workspace should look like this:

Now the model is created and all settings for the code generator, compiler and
linker are done.

9.3 Create your own data type

The planed application should read a C source �le and remove the comments.
Therefore we need a �le descriptor which is not part of the basic C types. The
type for the �le descriptor for MinGW is FILE. To make this type available on
the model level, you have to declare the type.

Open the �le Types.room from org.eclipse.modellib.c and take a look at the
declaration of string (last line) which is not a basic C type.

PrimitiveType string:ptCharacter -> charPtr default "0"

With this declaration, you make the string keyword available on model level
as a primitive type. This type will be translated to charPtr in your C
sources. charPtr is de�ned in etDatatypes.h. This header �le is platform speci�c
(generic). With this mechanism you can de�ne your own type system on model
level and map the model types to speci�c target/platform types.

CHAPTER 9. TUTORIAL REMOVE C-COMMENT (C) 63

To not interfere with other models, we will declare the type direct in the model.
Add the following line to your model:

RoomModel RemoveComment {

import room.basic.types.* from

"../../../org.eclipse.etrice.modellib.c/model/Types.room"

PrimitiveType file:ptInteger -> FILE default "0"

FILE is the native type for MinGW. Therefore you don't need a mapping within
etDatatypes.h. If your model should be portable across di�erent platforms you
should not take this shortcut.

9.4 Create the model

Due to the former tutorials you should be familiar with the steps to create the
model with protocols, actors and state machines.

The basic idea of the exercise is to create a �le reader actor, which is responsible
to open, close and read characters from the source �le. Another actor receives
the characters and �lters the comments (parser). The remaining characters
(pure source code) should be print out.

Remember the logical steps:

• create the model by the help of content assist (CTRL Space)

• name the model, subsystem and top level actor

• de�ne the protocol (in this case it should be able to send a char, and to
request the next char from the �le reader)

• create the structure (�le reader and parser with an appropriate port, create
the references and connect the ports)

• create the state machines

Try to create the model by yourself and take the following solution as an exam-
ple.

Structure:

CHAPTER 9. TUTORIAL REMOVE C-COMMENT (C) 64

File reader FSM:

Parser FSM:

CHAPTER 9. TUTORIAL REMOVE C-COMMENT (C) 65

The complete model can be found in org.eclipse.etrice.tutorials.c

Take a look at the �le attribute of the �le reader.

Attribute f:file ref

fopen expects a FILE *. f:�le ref declares a variable f from type reference to
�le, which is a pointer to FILE.

9.5 Generate, build and run the model

Before you can run the model you should copy one of the generated C source
�les into the project folder and name it test.txt.

Generate, build and run the model.

Your output should start like this:

CHAPTER 9. TUTORIAL REMOVE C-COMMENT (C) 66

9.6 Summary

This tutorial should help you to train the necessary steps to create a C model.
By the way you have seen how to create your own type system for a real em-
bedded project. An additional aspect was to show how simple it is to separate
di�erent aspects of the required functionality by the use of actors and protocols
and make them reusable.

Chapter 10

ROOM Concepts

This chapter gives an overview over the ROOM language elements and their
textual and graphical notation. The formal ROOM grammar based on Xtext
(EBNF) you can �nd here: ROOM Grammar

10.1 Actors

10.1.1 Description

The actor is the basic structural building block for building systems with
ROOM. An actor can be re�ned hierarchically and thus can be of arbitrar-
ily large scope. Ports de�ne the interface of an actor. An Actor can also have a
behavior usually de�ned by a �nite state machine.

10.1.2 Motivation

• Actors enable the construction of hierarchical structures by composition
and layering

• Actors have their own logical thread of execution

• Actors can be freely deployed

• Actors de�ne potentially reusable blocks

10.1.3 Notation

10.1.4 Details

Actor Classes, Actor References, Ports and Bindings

An ActorClass de�nes the type (or blueprint) of an actor. Hierarchies are
built by ActorClasses that contain ActorReferences which have another Ac-

67

http://git.eclipse.org/c/etrice/org.eclipse.etrice.git/tree/plugins/org.eclipse.etrice.core.room/src/org/eclipse/etrice/core/Room.xtext

CHAPTER 10. ROOM CONCEPTS 68

Table 10.1: Actor Class Notation
Element Graphical Notation Textual Notation

ActorClass

ActorRef

Table 10.2: Actor Class Example
Graphical Notation Textual Notation

torClass as type. The interface of an ActorClass is always de�ned by Ports. The
ActorClass can also contain Attributes, Operations and a �nite state machine.

External Ports de�ne the external interface of an actor and are de�ned in the
Interface section of the ActorClass.

Internal Ports de�ne the internal interface of an actor and are de�ned in the
Structure section of the ActorClass.

Bindings connect Ports inside an ActorClass.

Example:

• ActorClass1 contains two ActorReferences (of ActorClass2 and Actor-
Class3)

• port1 is a External End Port. Since it connects external Actors with
the behavior of the ActorClass, it is de�ned in the Interface section and
the Structure section of the ActorClass.

• port2 and port3 are Internal End Ports and can only be connected to
the ports of contained ActorReferences. Internal End Ports connect the
Behavior of an ActorClass with its contained ActorReferences.

• port4 is a relay port and connects external Actors to contained ActorRef-
erences. This port can not be accessed by the behavior of the ActorClass.

• port5 through port9 are Ports of contained ActorReferences. port8 and
port9 can communicate without interference with the containing Actor-
Class.

CHAPTER 10. ROOM CONCEPTS 69

• Bindings can connect ports of the ActorClass and its contained Actor-
References.

Attributes

Attributes are part of the Structure of an ActorClass. They can be of a Primi-
tiveType or a DataClass.

Example:

Operations

Operations are part of the Behavior of an ActorClass. Arguments and return
values can be of a PrimitiveType or a DataClass. DataClasses can be passed
by value (implicit) or by reference (keyword ref).

Example:

10.2 Protocols

10.2.1 Description

A ProtocolClass de�nes a set of incoming and outgoing messages that can be
exchanged between two ports. The exact semantics of a message is de�ned by
the execution model.

10.2.2 Motivation

• ProtocolClasses provide a reusable interface speci�cation for ports

• ProtocolClasses can optionally specify valid message exchange sequences

CHAPTER 10. ROOM CONCEPTS 70

10.2.3 Notation

ProtocolClasses have only textual notation. The example de�nes a Protocol-
Class with 2 incoming and two outgoing messages. Messages can have data
attached. The data can be of a primitive type (e.g. int32, �oat64, ...) or a
DataClass.

10.3 Ports

10.3.1 Description

Ports are the only interfaces of actors. A port has always a protocol assigned.
Service Access Points (SAP) and Service Provision Points (SPP) are specialized
ports that are used to de�ne layering.

10.3.2 Motivation

• Ports decouple interface de�nition (Protocols) from interface usage

• Ports decouple the logical interface from the transport

10.3.3 Notation

Class Ports

These symbols can only appear on the border of an actor class symbol.

Ports that de�ne an external interface of the ActorClass, are de�ned in the
Interface. Ports that de�ne an internal interface are de�ned in the Structure
(e.g. internal ports).

• External End Ports are de�ned in the Interface and the Structure

• Internal End Ports are only de�ned in the Structure

• Relay Ports are only de�ned in the Interface

• End Ports are always connected to the internal behavior of the Actor-
Class

• Replicated Ports can be de�ned with a �xed replication factor (e.g.
Port port18 [5]: ProtocolClass1) or a variable replication factor (e.g.
Port port18[*]: ProtocolClass1)

CHAPTER 10. ROOM CONCEPTS 71

Table 10.3: Class Port Notation

Element Graphical Notation Textual Notation

Class End Port

External Class End Port:

Internal Class End Port:

Conjugated
Class End Port

External Conjugated Class End
Port:

Internal Conjugated Class End
Port:

Class Relay
Port

Conjugated
Class Relay
Port

Replicated
Class End Port

External Replicated Class End
Port:

Internal Replicated Class End
Port:

Conjugated
Replicated
Class End Port

External Conjugated Repli-
cated Class End Port:

Internal Conjugated Replicated
Class End Port:

Replicated
Class Relay
Port
Conjugated
Replicated
Class Relay
Port

CHAPTER 10. ROOM CONCEPTS 72

Table 10.5: Title
Element Graphical Notation Textual Notation

Reference Port implicit

Conjugated Reference Port implicit

Replicated Reference Port implicit
Conjugated Replicated

Reference Port implicit

Reference Ports

These symbols can only appear on the border of an ActorReference symbol.
Since the type of port is de�ned in the ActorClass, no textual notation for the
Reference Ports exists.

10.4 DataClass

10.4.1 Description

The DataClass enables the modeling of hierarchical complex datatypes and op-
erations on them. The DataClass is the equivalent to a Class in languages like
Java or C++, but has less features. The content of a DataClass can always be
sent via message between actors (de�ned as message data in ProtocolClass).

10.4.2 Notation

Example: DataClass using PrimitiveTypes

Example: DataClass using other DataClasses:

CHAPTER 10. ROOM CONCEPTS 73

10.5 Layering

10.5.1 Description

In addition to the Actor containment hierarchies, Layering provides another
method to hierarchically structure a software system. Layering and actor hier-
archies with port to port connections can be mixed on every level of granularity.

1. an ActorClass can de�ne a Service Provision Point (SPP) to publish a
speci�c service, de�ned by a ProtocolClass

2. an ActorClass can de�ne a Service Access Point (SAP) if it needs a service,
de�ned by a ProtocolClass

3. for a given Actor hierarchy, a LayerConnection de�nes which SAP will be
satis�ed by (connected to) which SPP

10.5.2 Notation

10.6 Finite State Machines

10.6.1 Description

De�nition from Wikipedia:

A �nite-state machine (FSM) or �nite-state automaton (plural: au-
tomata), or simply a state machine, is a mathematical model used
to design computer programs and digital logic circuits. It is con-
ceived as an abstract machine that can be in one of a �nite number
of states. The machine is in only one state at a time; the state it
is in at any given time is called the current state. It can change
from one state to another when initiated by a triggering event or
condition, this is called a transition. A particular FSM is de�ned by
a list of the possible states it can transition to from each state, and
the triggering condition for each transition.

In ROOM each actor class can implement its behavior using a state
machine. Events occurring at the end ports of an actor will be

http://en.wikipedia.org/wiki/Finite-state_machine

CHAPTER 10. ROOM CONCEPTS 74

Description Graphical Notation Textual Notation

The Layer
Connections in this
model de�ne which
services are
provided by the
ServiceLayer
(digitalIO and
timer)

The
implementation of
the services (SPPs)
can be delegated to
sub actors. In this
case the actor
ServiceLayer relays
(delegates) the
implementation
services digitalIO
and timer to sub
actors

Every Actor inside
the
ApplicationLayer
that contains an
SAP with the same
Protocol as timer
or digitalIO will be
connected to the
speci�ed SPP

CHAPTER 10. ROOM CONCEPTS 75

Table 10.6: Title
Description Graphical Notation Textual Notation

State

InitialPoint implicit

TransitionPoint

ChoicePoint

Initial Transition

Triggered Transition

forwarded to and processed by the state machine. Events possibly
trigger state transitions.

10.6.2 Motivation

For event driven systems a �nite state machine is ideal for processing the stream
of events. Typically during processing new events are produced which are sent
to peer actors.

We distinguish �at and hierarchical state machines.

10.6.3 Notation

Flat Finite State Machine

The simpler �at �nite state machines are composed of the following elements:

Hierarchical Finite State Machine

The hierarchical �nite state machine adds the notion of a sub state machine
nested in a state. A few modeling elements are added to the set listed above:

CHAPTER 10. ROOM CONCEPTS 76

Table 10.7: Title
Description Graphical Notation Textual Notation

State with sub state
machine

Parent State Sub state machine

Entry Point
In sub state machine

Exit Point

10.6.4 Examples

Example of a �at �nite state machine:

Example of a hierarchical �nite state machine:

Top level

CHAPTER 10. ROOM CONCEPTS 77

Sub state machine of Initializing

Sub state machine of Running

Chapter 11

eTrice Features

11.1 Codegenerators

11.1.1 Java Generator

11.1.2 C++ Generator

11.1.3 C Generator

78

Chapter 12

Codegenerators

79

Chapter 13

Runtimes

80

Chapter 14

eTrice Models and Their
Relations

eTrice comprises several models:

• the ROOM model (*.room) � de�nes model classes and the logical struc-
ture of the model

• Con�g model (*.con�g) � de�nes con�guration values for attributes

• Physical model (*.etphys) � de�nes the structure and properties of the
physical system

• Mapping model (*.etmap) � de�nes a mapping from logical elements to
physical elements

In the following diagram the models and their relations are depicted. The
meaning of the arrows is: uses/references.

81

CHAPTER 14. ETRICE MODELS AND THEIR RELATIONS 82

In the following sections we will describe those models with emphasis of their
cross relations.

14.1 The ROOM Model

The ROOM model de�nes classes for Data, Protocols, Actors, SubSystems
and LogicalSystems. Thereby the three latter form a hierarchy. The @Log-
icalSystem@ is the top level element of the structure. It contains references
to SubSystemClass elements. The SubSystemClass in turn contain refer-
ences to ActorClass elements which again contain (recursively) references to
ActorClass elements. The complete structural hierarchy implies a tree which
has the LogicalSystem as root and where each reference stands for a new node
with possibly further branches.

Let's consider a simple example. It doesn't implement any meaningful and
completely omits behavioral and other aspects.

CHAPTER 14. ETRICE MODELS AND THEIR RELATIONS 83

When a LogicalSstem is instantiated then recursively all of the contained ref-
erenced elements are instantiated as instances of the corresponding class. Thus
the instance tree of above example looks like this (the third line in the white
boxes shows some mapping information, s.b.):

CHAPTER 14. ETRICE MODELS AND THEIR RELATIONS 84

14.2 The Con�g Model

Once we have the ROOM class model we can con�gure values using the Con�g
model. This can be done on the class level and/or on the instance level. Values
de�ned for class attributes are used for all instances unless there is an instance
value con�gured for the same attribute.

14.3 The Physical Model

The physical model de�nes the physical resources onto which the logical system
will be deployed. It is possible to de�ne runtime classes which (currently) only
de�nes the overall execution model of the platform.

CHAPTER 14. ETRICE MODELS AND THEIR RELATIONS 85

The physical system is composed of @Node@ references where each @Node@ is
de�ned as a class referencing a @RuntimeClass@ and de�ning @Threads@.

CHAPTER 14. ETRICE MODELS AND THEIR RELATIONS 86

14.4 The Mapping Model

The last model �nally combines all this information by mapping logical to phys-
ical entities.

CHAPTER 14. ETRICE MODELS AND THEIR RELATIONS 87

The result of the mapping is also depicted in above tree diagram of the instances.
All actor instances (the white boxes) are mapped to a node and a thread running
on this node (shown as @ node : thread).

Chapter 15

eTrice Developer's Reference

15.1 Architecture

The basic components of eTrice are depicted in the following diagram.

88

CHAPTER 15. ETRICE DEVELOPER'S REFERENCE 89

Additional to that the eTrice project comprises runtime libraries and unit tests
which are treated in subsequent sections.

15.1.1 Editor and Generator Components

• core

� core.room is an Xtext based language called Room. It consists of
the plug-in org.eclipse.etrice.core.room. Room is the basic modeling
language of eTrice.

� core.con�g is an Xtext based language called Con�g. It consists of the
plug-in org.eclipse.etrice.core.con�g. Con�g is a language designed
for the data con�guration of model elements. E.g. class and instance
attributes can be speci�ed.

� core.genmodel is an EMF based aggregation layer for Room models.
It consists of the plugin org.eclipse.etrice.core.genmodel. a Room
model can be transformed into a genmodel which allows easy access
to implicit relations of the Room model.

CHAPTER 15. ETRICE DEVELOPER'S REFERENCE 90

• ui

� textual

∗ room.ui is the ui counterpart of core.room. It consists of the
plug-in org.eclipse.etrice.core.room.ui. This plug-in realizes IDE
concepts like content assist, error markers and navigation by hy-
per links for the Room language.

∗ con�g.ui is the ui counterpart of core.con�g. It consists of the
plug-in org.eclipse.etrice.core.con�g.ui. This plug-in realizes IDE
concepts like content assist, error markers and navigation by hy-
per links for the Con�g language.

� graphical

∗ ui.common is a set of common code for the two diagram editors.
It consists of the plug-in org.eclipse.etrice.ui.common.

∗ ui.commands encapsulates some commands related to the nav-
igation between eTrice editors. It consists of the plug-in
org.eclipse.etrice.ui.commands.

∗ ui.structure is the Graphiti based editor for the Actor structure.
It consists of the plug-in org.eclipse.etrice.ui.structure.

∗ ui.behavior is the Graphiti based editor for the Actor behavior.
It consists of the plug-in org.eclipse.etrice.ui.behavior.

• generators

� generator is a set of general classes and language independent parts of
all generators. It consists of the plug-in org.eclipse.etrice.generator.

� generator.c is the generator for the ANSI-C target language. It con-
sists of the plug-in org.eclipse.etrice.generator.c.

� generator.java is the generator for the Java target language. It con-
sists of the plug-in org.eclipse.etrice.generator.java.

� generator.doc is the generator for the model documentation. It con-
sists of the plug-in org.eclipse.etrice.generator.doc.

15.1.2 Runtimes

Currently eTrice ships with a C and a Java runtime. The runtimes are libraries

CHAPTER 15. ETRICE DEVELOPER'S REFERENCE 91

Model Tweaks

The Room EMF model is inferred from the grammar. However, this
powerful mechanism has to be tweaked at some places. This is done in the
/org.eclipse.etrice.core.room/src/org/eclipse/etrice/core/RoomPostprocessor.ext
which is written in the legacy Xtend language.

The following parts of the model are changed or added:

• the default

multiplicity

of the Port is set to 1

• the operation isReplicated is added to the Port

• the default size of the ActorRef is set to 1

• an operation getName is add to the State class

• an operation getName is add to the StateGraphItem class

• an operation getGeneralProtocol is added to the InterfaceItem

Imports by URI Using Namespaces

The import mechanism employed is based on URIs. This is con�gured for
one part in the GenerateRoom.mwe2 model work�ow by setting the fragments
ImportURIScopingFragment and ImportUriValidator). For the other part it is
con�gured in the Guice modules by binding

• PlatformRelativeUriResolver � this class tries to convert the import
URI into a platform relative URI. It also replaces environment variables
written in $ with their respective values.

• ImportedNamespaceAwareLocalScopeProvider � this is a standard scope
provider which is aware of namespaces

• GlobalNonPlatformURIEditorOpener � this editor opener tries to convert
general URIs into platform URIs because editors can only open platform
URIs

• ImportAwareHyperlinkHelper � turns the URI part of an import into a
navigatable hyper link

Naming

CHAPTER 15. ETRICE DEVELOPER'S REFERENCE 92

Helpers

The RoomHelpers class provides a great deal of static methods that help retrieve
frequently used information from the model. Among many, many others

• getAllEndPorts(ActorClass) - returns a list of all end ports of an actor
class including inherited ones

• getInheritedActionCode(Transition, ActorClass) - get the inherited
part of a transition's action code

• getSignature(Operation) - returns a string representing the operation
signature suited for a label

Validation

Validation is used from various places. Therefore all validation code is accumu-
lated in the @ValidationUtil@ class. All methods are static and many of them
return a Result object which contains information about the problem detected
as well as object and feature as suited for most validation purposes.

15.2.2 Con�g Language Overview

Model Tweaks

A couple of operations are added to the Con�gModel

• getActorClassConfigs

• getActorInstanceConfigs

• getProtocolClassConfigs

• getSubSystemConfigs

Imports by URI Using Namespaces

Imports are treated like in Room language, section Imports by URI Using
Namespaces.

Util

A set of static utility methods can be found in the ConfigUtil class.

15.2.3 Aggregation Layer Overview

The eTrice Generator Model (genmodel) serves as an aggregation layer. Its
purpose is to allow easy access to information which is implicitly contained in
the Room model but not simple to retrieve. Examples of this are the state
machine with inherited items or a list of all triggers active at a state in the

CHAPTER 15. ETRICE DEVELOPER'S REFERENCE 93

order in which they will be evaluated or the actual peer port of an end port
(following bindings through relay ports).

The Generator Model is created from a list of Room models by a call of the

createGeneratorModel(List<RoomModel>, boolean)

method of the GeneratorModelBuilder class.

The Root object of the resulting Generator Model provides chie�y two things:

• a tree of instances starting at each SubSystem with representations of each
ActorInstance and PortInstance

• for each ActorClass a corresponding ExpandedActorClass with an ex-
plicit state machine containing all inherited state graph items

The Instance Model

The instance model allows easy access to instances including their unique paths
and object IDs. Also it is possible to get a list of all peer port instances for each
port instance without having to bother about port and actor replication.

The Expanded Actor Class

The expanded actor class contains, as already mentioned, the complete state
machine of the actor class. This considerably simpli�es the task of state machine
generation. Note that the generated code always contains the complete state
machine of an actor. I.e. no target language inheritance is used to implement the
state machine inheritance. Furthermore the ExpandedActorClass gives access
to

• getIncomingTransitions(StateGraphNode) � the set of incoming tran-
sition of a StateGraphNode (State, ChoicePoint or TransitionPoint)

• getOutgoingTransitions(StateGraphNode) � the set of outgoing tran-
sition of a StateGraphNode

• getActiveTriggers(State) � the triggers that are active in this State
in the order they are evaluated

Transition Chains

By transition chains we denote a connected subset of the (hierarchical) state
machine that starts with a transition starting at a state and continues over
transitional state graph nodes (choice points and transition points) and con-
tinuation transitions until a state is reached. In general a transition chain
starts at one state and ends in several states (the chain may branch in
choice points). A TransitionChain of a transition is retrieved by a call of
getChain(Transition) of the ExpandedActorClass. The TransitionChain

accepts an ITransitionChainVisitor which is called along the chain to gen-
erate the action codes of involved transitions and the conditional statements
arising from the involved choice points.

CHAPTER 15. ETRICE DEVELOPER'S REFERENCE 94

15.2.4 Generator Overview

There is one plug-in that consists of base classes and some generic generator
parts which are re-used by all language speci�c generators

Base Classes and Interfaces

We just want to mention the most important classes and interfaces.

• ITranslationProvider � this interface is used by the
DetailCodeTranslator for the language dependent translation of e.g.
port.message() notation in detail code

• AbstractGenerator � concrete language generators should derive from
this base class

• DefaultTranslationProvider � a stub implementation of
ITranslationProvider from which clients may derive

• Indexed � provides an indexed iterable of a given iterable

• GeneratorBaseModule � a Google Guice module that binds a couple of
basic services. Concrete language generators should use a module that
derives from this

Generic Generator Parts

The generic generator parts provide code generation blocks on a medium gran-
ularity. The language dependent top level generators embed those blocks in
a larger context (�le, class, ...). Language dependent low level constructs are
provided by means of an ILanguageExtension. This extension and other parts
of the generator be con�gured using Google Guice dependency injection.

GenericActorClassGenerator The GenericActorClassGenerator gener-
ates constants for the interface items of a actor. Those constants are used by
the generated state machine.

GenericProtocolClassGenerator The GenericProtocolClassGenerator

generates message ID constants for a protocol.

GenericStateMachineGenerator

The GenericStateMachineGenerator generates the complete state machine
implementation. The skeleton of the generated code is

• de�nition state ID constants

• de�nition of transition chain constants

• de�nition of trigger constants

CHAPTER 15. ETRICE DEVELOPER'S REFERENCE 95

• entry, exit and action code methods

• the exitTo method

• the executeTransitionChain method

• the enterHistory method

• the executeInitTransition method

• the receiveEvent method

The state machine works as follows. The main entry method is the
receiveEvent method. This is the case for both, data driven (polled) and
event driven state machines. Then a number of nested switch/case statements
evaluates trigger conditions and derives the transition chain that is executed.
If a trigger �res then the exitTo method is called to execute all exit codes
involved. Then the transition chain action codes are executed and the choice
point conditions are evaluated in the executeTransitionChain method. Fi-
nally the history of the state where the chain ends is entered and all entry codes
are executed by enterHistory.

The Java Generator

The Java generator employs the generic parts of the generator. The
JavaTranslationProvider is very simple and only handles the case of send-
ing a message from a distinct replicated port: replPort[2].message(). Other
cases are handled by the base class by returning the original text.

The DataClassGen uses Java inheritance for the generated data classes. Oth-
erwise it is pretty much straight forward.

The ProtocolClassGen generates a class for the protocol with nested static
classes for regular and conjugated ports and similar for replicated ports.

The ActorClassGen uses Java inheritance for the generated actor classes. So
ports, SAPs and attributes and detail code methods are inherited. Not inherited
is the state machine implementation.

The ANSI-C Generator

The C generator translates data, protocol and actor classes into structs together
with a set of methods that operate on them and receive a pointer to those data
(called self in analogy to the implicit C++ this pointer). No dynamic memory
allocation is employed. All actor instances are statically initialized. One of the
design goals for the generated C code was an optimized footprint in terms of
memory and performance to be able to utilize modeling with ROOM also for
tiny low end micro controllers.

The Documentation Generator

The documentation generator creates documentation in LaTex format which
can be converted into PDF and many other formats.

	eTrice Overview
	What is eTrice?
	Reduction of Complexity

	 Introduction to the ROOM Language
	Scope of ROOM
	Where does it come from?
	Which kind of SW-Systems will be addressed?
	What is the relation between OOP and ROOM?
	What are the benefits of ROOM?
	Which consequences must be taken into account?

	Basic Concepts
	Actor, Port, Protocol
	Hierarchy in Structure and Behavior
	Layering
	Run to Completion

	Execution Models
	Communication Methods
	Execution Methods
	Execution Models

	Working with the eTrice Tutorials
	Setting up the Workspace for Java Projects
	Tutorial HelloWorld for Java
	Scope
	Create a new model from scratch
	Create a state machine
	Build and run the model
	Open the Message Sequence Chart
	Summary

	Tutorial Blinky (Java)
	Scope
	Create a new model from scratch
	Add two additional actor classes
	Create a new protocol
	Import the Timing Service
	Finish the model structure
	Implement the Behavior
	Summary

	Tutorial Sending Data (Java)
	Scope
	Create a new model from scratch
	Add a data class
	Create a new protocol
	Create MrPing and MrPong Actors
	Define Actor Structure and Behavior
	Define MrPongs behavior
	Define MrPing behavior

	Define the top level
	Generate and run the model
	Summary

	Tutorial Pedestrian Lights (Java)
	Scope
	Setup the model
	Why does it work and why is it safe?

	Tutorial Remove C-Comment (C)
	Scope
	Create a new model from scratch
	Create your own data type
	Create the model
	Generate, build and run the model
	Summary

	ROOM Concepts
	Actors
	Description
	Motivation
	Notation
	Details

	Protocols
	Description
	Motivation
	Notation

	Ports
	Description
	Motivation
	Notation

	DataClass
	Description
	Notation

	Layering
	Description
	Notation

	Finite State Machines
	Description
	Motivation
	Notation
	Examples

	eTrice Features
	Codegenerators
	Java Generator
	C++ Generator
	C Generator

	Codegenerators
	Runtimes
	eTrice Models and Their Relations
	The ROOM Model
	The Config Model
	The Physical Model
	The Mapping Model

	eTrice Developer's Reference
	Architecture
	Editor and Generator Components
	Runtimes
	Unit Tests

	Component Overview
	Room Language Overview
	Config Language Overview
	Aggregation Layer Overview
	Generator Overview

