
IBM Rational Software
Development Conference 2006

OC01
© 2006 IBM Corporation

ECF on the Servers

OR

Equinox/OSGi + ECF = 'Equinox Service Bus'

Scott Lewis -- slewis@composent.com
Mustafa Isik -- codesurgeon@gmail.com
Roland Fru -- roland@bitsvalley.com

mailto:slewis@composent.com
mailto:codesurgeon@gmail.com
mailto:roland@bitsvalley.com

ECF: What is it?
● Family of APIs for messaging

– Very Small Core
● Asynch messaging 'container'
● extensibility mechanism

– Extensibility with Adapters
● data channels, object/model replication, service

discovery, file transfer,presence/im/chat, voip call setup,
remote services, others/your own...

Overall Goals for Framework

– Usability
● Minimalism: Only use messaging APIs you need
● API Consistency: Consistent way of doing same thing

(e.g. Filetransfer) over multiple protocols (e.g. Http,
bittorrent)

– Interoperability, Integration
– Open protocols via Open source

Now: ECF on Clients

● Eclipse-Based Tool Collaboration
– Corona (tools collaboration)
– ALF (process orchestration)
– Integrated VOIP/IM/chat
– Shared editing
– Dev Team Collaboration (teams)

● RCP Apps/Tools
– Any app that needs/wants

communications/collaboration functionality

Also Good for Server(s)
● Integration

– Many protocols, one UI, one application 'model'
● Interoperability

● Legacy systems/protocols via 'bridging' (OHF)
● Replication for load balancing
● Remote Services API for Server-Server

Messaging

ECF Remote Service API (new!)

● Register service
– IRemoteServiceContainer.registerService

● Service registry is replicated within
group (using ECF provider)

● Intentionally separate from OSGi service
registry

ECF Remote Service API...on 'Client'

Lookup
 IRemoteServiceReference[] refs = getRemoteServiceReferences(...);
 IRemoteService rservice = getRemoteService(refs[0]);

THEN, 4 explicit options for remote service
invocation
 1. Object proxy = IRemoteService.getProxy()

– Call/return. Blocks until result
 2. Object result = IRemoteService.callSynch(IRemoteCall)

– Call/return. Blocks until result
 3. IRemoteService.callAsynch(IRemoteCall, listener)

– Call/return. No blocking (listener notified)
 4. IRemoteService.fireAsynch(IRemoteCall)

– 'Fire and go'. No block (no success/failure info)

ECF Remote Service API: Summary
Looks very similar to OSGi services
BundleContext.registerService
BundleContext.getServiceReferences(...)
BundleContext.getService(ref)

Separate but Equal
Transport can be: JMS, ECF generic, XMPP,

RMI, XML-RPC, SOAP, others

Server-Side ECF='Equinox Message Bus'

– Protocols dynamically added/loaded
● Server can talk different protocols to get same

API/semantics
– Communications components/bundles can

consistently be created for
● Eclipse plugins
● RCP Apps
● Servers

Conclusion

Website
 http://www.eclipse.org/ecf

Mailing List
 http://dev.eclipse.org/mailman/listinfo/ecf-dev

Newsgroup
 news://news.eclipse.org/eclipse.technology.ecf

http://www.eclipse.org/ecf
http://dev.eclipse.org/mailman/listinfo/ecf-dev
news://news.eclipse.org/eclipse.technology.ecf
news://news.eclipse.org/eclipse.technology.ecf

